Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T11:17:34.932Z Has data issue: false hasContentIssue false

On The Motion of Trapped Particles in The Vicinity of Corotation Centers

Published online by Cambridge University Press:  12 April 2016

C. Beaugé
Affiliation:
Observatorio Astronómico, Universidad Nacional de Córdoba, Laprida 854, (5000) Córdoba, Argentina
A. Lemaître
Affiliation:
Département de Mathématique, FUNDP, 8 Rempart de la Vierge, 5000 Namur, Belgium
S. Jancart
Affiliation:
Département de Mathématique, FUNDP, 8 Rempart de la Vierge, 5000 Namur, Belgium

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the present paper we analyse the motion of a massless particle during the capture process in an exterior mean-motion resonance under the effects of an external dissipative force. In particular, we study the orbital evolution from its initial approach to the commensurability up to the final nesting place in the periodic orbit around the equilibrium solution.

Type
Extended Abstracts
Copyright
Copyright © Kluwer 1999

References

Adachi, I., Hayashi, C., and Nakazawa, K.: 1976, Prog. Theor. Phys., 56, 17561771.Google Scholar
Beaugé, C., Lemaître, A. and Jancart, S.: 1998, Planet. Space Science, in press.Google Scholar
Gomes, R. and Mothe-Diniz, T.: 1998, in preparation.Google Scholar
Hale, J.K.: 1969), Ordinary Differential Equations, Wiley-Interscience, J. Wiley & Sons, New York. Google Scholar
Henrard, J.: 1970, Celest. Mech., 3, 107120.Google Scholar
Kamel, A.A:. 1969, Celest. Mech., 1, 190199.Google Scholar
Poincaré, H.: 1885, J. de Math, pures appl., ser. 4, 1, 167. Reprinted in Oeuvres de Henri Poincaré, I, 90, Gauthier-Villars, Paris, (1928).Google Scholar