Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-30T01:30:49.729Z Has data issue: false hasContentIssue false

Observations of γ-ray Bursts and Solar Flares with Granat

Published online by Cambridge University Press:  12 April 2016

O. Terekhov
Affiliation:
Space Research Institute (IKI), Profsoyuznaya 84/32, 117810 Moscow, Russia
R.A. Sunyaev
Affiliation:
Space Research Institute (IKI), Profsoyuznaya 84/32, 117810 Moscow, Russia
D. Denisenko
Affiliation:
Space Research Institute (IKI), Profsoyuznaya 84/32, 117810 Moscow, Russia
A. Tkachenko
Affiliation:
Space Research Institute (IKI), Profsoyuznaya 84/32, 117810 Moscow, Russia
C. Barat
Affiliation:
Centre d’Etude Spatiale des Rayonnements B.P. 4346, F-31029 Toulouse, France
J.-P. Dezalay
Affiliation:
Centre d’Etude Spatiale des Rayonnements B.P. 4346, F-31029 Toulouse, France
R. Talon
Affiliation:
Centre d’Etude Spatiale des Rayonnements B.P. 4346, F-31029 Toulouse, France
N. Lund
Affiliation:
Danish Space Research Institute, Gl.Lundtoftevej 77, DK-2800 Lyngby, Denmark
S. Brandt
Affiliation:
Danish Space Research Institute, Gl.Lundtoftevej 77, DK-2800 Lyngby, Denmark
A.J. Castro-Tirado
Affiliation:
Danish Space Research Institute, Gl.Lundtoftevej 77, DK-2800 Lyngby, Denmark

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Granat observatory was launched into a high apogee orbit on 1989 December 1 by a PROTON launcher. The initial Granat orbit had an apogee close to 200000 km and a perigee of 2000 km with an orbital period of 4 days. The satellite is entering the radiation belts for a few hours every orbit. Due to orbital evolution the perigee increased and the apogee decreased with time. After about 1.5 years of operation the perigee increased up to 20000 km. This has put the satellite completely outside of the proton radiation belts which makes the detector activation during the perigee passage negligible. Moreover, the satellite orbit is outside of the magnetosphere during the most parts of the mission. This makes such an orbit very attractive for high energy astrophysics missions which require low background level in order to achieve high sensitivity, and makes it essential for the investigation of the high energy transient phenomena such as cosmic γ-ray bursts and solar flares.

Type
Gamma-Ray Bursts
Copyright
Copyright © Springer-Verlag 1995

References

Castro-Tirado, A.J., Brandt, S., Lund, N., Lapshov, I.Y., Terekhov, O., Sunyaev, R.A., 1994, Gamma-Ray Bursts, Fishman, G., Brainerd, J., Hurley, K. (eds.), AIP Conference Proceedings 307, American Institute of Physics, New York, p. 17 Google Scholar
Hartman, D., 1995, The Lives of the Neutron Stars, NATO ASI C 450, Alpar, M.A., Kiziloglu, U., van Paradijs, J. (eds.), Kluwer, Dordrecht, p. 495 Google Scholar
Lobachev, V.A., Terekhov, O.V., Denisenko, D.V., Sunyaev, R.A., Kuznetsov, A.V., Tkachenko, A.Yu., Barat, C., Dezalay, J.-P., Talon, R., 1995, Astr. Letters 21 (in press)Google Scholar
Meegan, C., Fishman, G., Wilson, R., Brock, M., Horack, J., Paciesas, W., Pendleton, G., Briggs, M., Koshut, T., Kouveliotou, C., Teegarden, B., Matteson, J., Hakkila, J., 1994, Gamma-Ray Bursts, Fishman, G., Brainerd, J., Hurley, K. (eds.), AIP Conference Proceedings 307, American Institute of Physics, New York, p. 3 Google Scholar
Pelaez, F., Mandrou, P., Niel, M., Mena, B., Vilmer, N., Trottet, G., Lebrun, F., Paul, J., Terekhov, O., Sunyaev, R., Churazov, E., Gilfanov, M., Denisenko, D., Kuznetsov, A., Dyachkov, A., Khavenson, N., 1992, Solar Phys. 140, 121 Google Scholar
Pelaez, F., Bouchet, L., Jourdain, E., Niel, M., Claret, A., Laurent, P., Lebrun, F., Paul, J., Terekhov, O., Sunyaev, R., Kuznetsov, A., Denisenko, D., Gilfanov, M., Churazov, E., Khavenson, N., Diachkov, A., 1994, ApJS 92, 651 Google Scholar
Schaefer, B.E., Teegarden, B., Cline, T., Fishman, G., Meegan, C., Wilson, R., Paciesas, W., Pendleton, G., Matteson, J., Band, D., 1992, ApJ 393, L51 CrossRefGoogle Scholar
Stepanov, A.V., Urpo, S., Zaitsev, V.V., 1992, Solar Phys. 140, 139 Google Scholar
Sunyaev, R., Churazov, E., Gilfanov, M., Terekhov, O., D’iachkov, A., Khavenson, N., Kovtunenko, V., Kremnev, R., Claret, A., Lebrun, F., 1993, ApJ 402, 579 Google Scholar
Talon, R., Trottet, G., Vilmer, N., Barat, C., Dezalay, J., Sunyaev, R., Terekhov, O., Kuznetsov, A., 1993, Solar Phys. 147, 137 Google Scholar
Terekhov, O.V., Sunyaev, R.A., Kuznetsov, A.V., Molchanov, A.Yu., Barat, C., Vedrenne, G., Dezallay, J.-P., Niel, M., Talon, R., 1992, Frontiers of X-ray Astronomy, Proceedings of the YAM AD A Conference XXVIII, Frontiers Science Series - 2, Tanaka, Y., Koyama, K. (eds.) Universal Academy Press, Tokyo, p. 253 Google Scholar
Terekhov, O.V., Sunyaev, R.A., Kuznetsov, A.V., Barat, C., Talon, R., Trottet, G., Vilmer, N., 1993, Astr. Letters 19, 163 Google Scholar
Terekhov, O.V., Lobachev, V.A., Denisenko, D.V., Lapshov, I.Y., Sunyaev, R.A., Lund, N., Castro-Tirado, A.J., Brandt, S., 1993, Astr. Letters 19, 686 Google Scholar
Terekhov, O.V., Denisenko, D.V., Lobachev, V.A., Sunyaev, R.A., Kovtun, A.V., Kuznetsov, A.V., Barat, C., Dezalay, J.-P., Talon, R., 1994, Astr. Letters 20, 323 Google Scholar
Terekhov, O.V., Denisenko, D.V., Lobachev, V.A., Sunyaev, R.A., Kuznetsov, A.V., Tkachenko, A.Yu., Barat, C., Dezalay, J.-P., Talon, R., 1995a, Astr. Letters 21 (in press)Google Scholar
Terekhov, O.V., Lobachev, V.A., Sunyaev, R.A., Kovtun, A.V., Denisenko, D.V., Kuznetsov, A.V., Barat, C., Dezalay, J.-P., Talon, R., 1995b, Astr. Letters 21 (in press)Google Scholar
Terekhov, O.V. et al., 1995c, Astr. Letters 21 (in press)Google Scholar