Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-17T16:10:14.439Z Has data issue: false hasContentIssue false

Observations of Long Period Variable Stars

Published online by Cambridge University Press:  12 April 2016

T. Lloyd Evans*
Affiliation:
South African Astronomical Observatory, P.O. Box 9 Observatory 7935, South Africa

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The study of long period variable stars has been transformed in recent years by two observational developments. Large samples of stars have been observed at infrared wavelengths, providing knowledge of the intrinsic properties of the star as well as of circumstellar dust shells, and these observations have been extended to the variables in well defined stellar systems to allow their properties to be studied in relation to the stellar population to which they belong. Spectroscopic determinations of chemical composition have also provided several crucial insights.

Type
4. The Variability-Evolution Connection
Copyright
Copyright © Cambridge University Press 1989

References

Alksne, Z.K., Ikaunieks, Y.Y. & Baumert, J.H. (1981). Carbon Stars. Tucson, Ariz.: Pachart.Google Scholar
Andrews, P.J. (1975). NT Tel, a halo population S-type Mira variable. Mon. Not. R. astr. Soc, 173, no. 3, 7017.Google Scholar
Arp, H., Brueckel, F. & Lourens, J. v. B. (1963). Long-period and red variables in 47 Tucanae. Astrophys. J., 137, no. 1, 22848.Google Scholar
Bedijn, P.D. (1987). Dust shells around Miras and OH/IR stars. Astr. Astrophys., 186, no. 1, 13652.Google Scholar
Beichman, CA., Neugebauer, G., Habing, H.J., Clegg, P.E. & Chester, T.J. (1985). IRAS Point Source Catalogue. Pasadena, Calif.: Jet Propulsion Lab.Google Scholar
Blanco, V.M., McCarthy, M.F. & Blanco, B.M. (1984). Giant M stars in Baade's window. Astr. 3., 89, no. 5, 63647.Google Scholar
Buonanno, R. (1986). Turn-offs and ages of globular clusters. Mem. Soc. astr. Ital., 57, no. 3, 33343.Google Scholar
Burstein, D. (1985). Observational constraints on the ages and abundances of old stellar populations. Publs. astr. Soc. Pacific, 97;, no. 588, 89103.Google Scholar
Buscombe, W., Gascoigne, S.C.B. & de Vaucouleurs, G. (1954). The Magellanic Clouds. Aust. 3. Sci. Suppl., 17, no. 3.Google Scholar
Catchpole, R.M. & Feast, M.W. (1971). An Se variable of the halo population. Observatory, 91, no. 980, 2930.Google Scholar
Catchpole, R.M. & Feast, M.W. (1985). The distributions and motions of peculiar red giants. In Cool Stars with Excesses of Heavy Elements, ed Jaschek, M. & Keenan, P.C., pp 11332. Dordrecht: Reidel. Google Scholar
Catchpole, R.M., Robertson, B.S.C., Lloyd Evans, T.H.H., Feast, M.W., Glass, I.S. & Carter, B.S. (1979). JHKL infrared photometry of Mira variables. SAAO Circ., 1, no. 4, 6197.Google Scholar
Claussen, M.J., Kleinmann, S.G., Joyce, R.R. & Jura, M. (1987). A flux-limited sample of galactic carbon stars. Astrophys. J. Suppl. 65, no. 3, 385-404.Google Scholar
De Gioia-Eastwood, K., Hackwell, 3.A., Grasdalen, G.L. & Gehrz, R.D. (1981). A correlation between infrared excess and period for Miravariables. Astrophys. 3., 245, no. 2, L75-8.Google Scholar
Dickens, R.J., Feast, M.W., & Lloyd Evans, T. (1972). Photometry and spectroscopy of red variables in Omega Centauri. Mon. Not. R. astr. Soc., 159, no. 3, 33748.Google Scholar
Dickinson, D.F., Reid, M.3., Morris, M. & Redman, R. (1978). Long period variables: stellar and expansion velocities. Astrophys. 3., 220, no. 3, L113-16.Google Scholar
Dominy, J.F. & Wallerstein, G. (1986). Quantitative Technetium abundances in two long-period variables. Astrophys. J., 310, no. 1, 371-77.Google Scholar
Dyck, H.M., Forrest, W.J., Gillett, F.C., Stein, W.A., Gehrz, R.D., Woolf, N.j. & Shawl, S.J. (1971). Visual intrinsic polarization and infrared excess of cool stars. Astrophys. J., 165, no. 1, 5766.Google Scholar
Eggen, O.J. (1972). Narrow and broad-band photometry of red stars. Astrophys. J., 172, no. 3, 63977.Google Scholar
Elias, J.H., Frogel, J.A. & Humphreys, R.M. (1985). M supergiants in the Milky Way and the Magellanic Clouds. Astrophys. J. Suppl., 57, no. 1, 91-131.Google Scholar
Engels, D., Kreysa, E., Schultz, G.V. & Sherwood, W.A. (1983). The nature of OH/IR stars. Astr. Astrophys., 124, no. 1, 123138.Google Scholar
Feast, M.W. (1963). The long period variables. Mon. Not. R. astr. Soc, 125, no. 5, 367415.Google Scholar
Feast, M.W. (1965). Long period variables in globular clusters. Observatory, 85, no. 944, 1620.Google Scholar
Feast, M.W. (1973). Observational aspects of slow variables in globular clusters. In Variable Stars in Globular Clusters and in Related Systems, ed. J.D. Fernie, pp 131144. Dordrecht: Reidel. Google Scholar
Feast, M.W. (1984). The period-luminosity relation for Mira variables and the distance of the Large Magellanic Cloud. Mon. Not. R. astr. Soc, 211, no. 3, 51-5 P.Google Scholar
Feast, M.W. (1985). The bolometric luminosities of Type II OH/IR sources. Observatory, 105, no. 1066, 85-9.Google Scholar
Feast, M.W. (1986). Variables, the galactic bulge and IRAS. In Light on Dark Matter, ed Israel, F.P., pp 33948. Dordrecht: Reidel. Google Scholar
Feast, M.W., Robertson, B.S.C., Catchpole, R.M., Lloyd Evans, T., Glass, I.S. & Carter, B.S. (1982). The infrared properties of Mira-type variables and other cool stars. Mon. Not. R. astr. Soc, 201, no. 2, 439-50.Google Scholar
Feast, M.W. & Whitelock, P.A. (1987). Mira variables and the galactic bulge population. In Late Stages of Stellar Evolution, ed Kwok, S. & Pottasch, S.R., pp 3346. Dordrecht: Reidel. Google Scholar
Feast, M.W., Whitelock, P.A., Catchpole, R.M., Roberts, G. & Overbeek, M.D. (1984). Variable circumstellar obscuration of the carbon star R Fornacis. Mon. Not. R. astr. Soc, 211, no. 2, 3317.Google Scholar
Feast, M.W., Woolley, R. & Yilmaz, N. (1972). The kinematics of semi-regular red variables in the solar neighbourhood. Mon. Not. R. astr. Soc. 158, no. 1, 2346.Google Scholar
Forrest, W.J., Gillett, F.C. & Stein, W.A. (1975). Circumstellar grains and the intrinsic polarization of starlight. Astrophys. J., 195, no. 2, 423-40.Google Scholar
Fox, M.W. (1982). Photometry of red variables in 47 Tucanae. Mon. Not. R. astr. Soc, 199, no. 2, 71523.Google Scholar
Fox, M.W., Wood, P.R. & Dopita, M.A. (1984). Shock waves in Mira variables. Astrophys. J., 286, no. 1, 33749.Google Scholar
Frogel, J.A. (1983). The evolutionary state and pulsation characteristics of red variables in globular clusters. Astrophys. J., 272, no. 1, 16774.Google Scholar
Frogel, J.A. & Elias, J.H. (1988). Red variables in globular clusters. Astrophys. J., 324, no. 2, 82339.Google Scholar
Frogel, CI.A., Persson, S.E. & Cohen, J.G. (1981). Infrared photometry of red giants in the globular cluster 47 Tucanae. Astrophys. 3., 246, no. 3, 84265.Google Scholar
Frogel, 3.A., Persson, S.E. & Cohen, J.G. (1983). Infrared photometry, bolometric luminosities and effective temperatures for giant stars in 26 globular clusters. Astrophys. J. Suppl., 53, no. 3, 71349.Google Scholar
Frogel, J.A. & Whitford, A.E. (1987). M giants in Baade's window. Astrophys. J., 320, no. 1, 199237.Google Scholar
Gehrz, R.D. & Woolf, N.J. (1971). Mass loss from M stars. Astrophys. J., 165, no. 2, 28594.Google Scholar
Gillet, D. (1988). The Balmer emission profiles in Mira stars. Astr. Astrophys., J.92, no. 1, 20620.Google Scholar
Glass, I.S. (1986). IRAS sources in the Sgr I window. Mon Not. R. astr. Soc., 221, no. 4, 87985.Google Scholar
Glass, I.S., Catchpole, R.M., Feast, M.W., Whitelock, P.A. & Reid, I.N. (1987). The period-luminosity relation for Mira-like variables in the LMC. In Late Stages of Stellar Evolution, ed Kwok, S. & Pottasch, S.R., pp 514. Dordrecht: Reidel. Google Scholar
Glass, I.S. & Feast, M.W. (1982). Infrared photometry of Mira variables in the Baade windows. Mon. Not. R. astr. Soc, 198, no. 1, 199214.Google Scholar
Glass, I.S. & Lloyd Evans, T. (1981). A period-luminosity relation for Mira variables in the Large Magellanic Cloud. Nature, 291, no. 5813, 3034.Google Scholar
Glass, I.S. & Reid, N. (1985). A survey for red variables in the LMC. Mon. Not. R. astr. Soc, 2L4, no. 3, 40518.Google Scholar
Herbig, G.H. (1956). Identification of aluminium hydride as the emitter of bright lines observed in χ Cygni near minimum light. Publs. astr. Soc. Pacific, 68, no. 402, 20410.Google Scholar
Hinkle, K.H., Hall, D.N.B. & Ridgway, S.T. (1982). Time series infrared spectroscopy of the Mira variable χ Cygni. Astrophys. J., 252, no. 2, 697714.Google Scholar
Hinkle, K.H., Scharlach, W.W.G. & Hall, D.N.B. (1984). Astrophys. J. Suppl. , 56, no. 1, 117.Google Scholar
Houk, N. (1963). V1280 Sagittarii and the other long-period variables with secondary periods. Astr. J., 68, no. 4, 2537.Google Scholar
Hyland, A.R. (1974). Medium resolution stellar spectra in the two micron region. In Highlights of Astronomy J, ed G. Contopoulos, pp 307-26. Dordrecht: Reidel. Google Scholar
Iben, I. & Renzini, A. (1983). Asymptotic giant branch evolution and beyond. Ann. Rev. Astr. Astrophys., 21, 271-342.Google Scholar
IRAS Science Team (1986). Atlas of low-resolution spectra. Astr. Astrophys. Suppl., 65, no. 4, 607-1065.Google Scholar
Joy, A.H. (1949). Spectra of the brighter variables in globular clusters. Astrophys. J., 110, no. 2, 10516.Google Scholar
Jura, M. (1986). Mass loss from carbon stars. Astrophys. J., 303, no. 1, 32732.Google Scholar
Jura, M. (1988). Mass loss from S stars. Astrophys. J. Suppl., 66, no. 1, 3341.Google Scholar
Kahane, C., Maizels, C. & Jura, M. (1988). The bipolar outflow from the rotating carbon star, V Hydrae. Astrophys. J., 328, no. 1, L25-8.Google Scholar
Keenan, P.C., 1954. Classification of the S-type stars. Astrophys. J., 120, no. 3, 484505.Google Scholar
Kholopov, P.N. et al. (1985). General Catalogue of Variable Stars. Moscow: Nauka.Google Scholar
Knapp, G.R. & Morris, M. (1985). Mass loss from evolved stars. Astrophys. J., 292, no. 2, 64069.Google Scholar
Le Bertre, T. (1988). Optical and infrared observations of the carbon Mira R Fornacis. Astr. Astrophys., 190, no. 1, 7986.Google Scholar
Little, S.J., Little-Marenin, I.R. & Bauer, W.H. (1987). Additional late-type stars with technetium. Astr. J.', 94, no. 4, 98195.Google Scholar
Lloyd Evans, T. (1971a). Supergiant red variable stars of large amplitude in the Small Magellanic Cloud. Observatory, 91 no. 982, 11820.Google Scholar
Lloyd Evans, T. (1971b). A search for red variable stars in the Magellanic Clouds. In the Magellanic Clouds, ed Muller, A.B., pp 74-78. Dordrecht: Reidel. Google Scholar
Lloyd Evans, T. (1974). Near-infrared photometry of globular clusters-II. The metal-rich cluster 47 Tucanae. Mon. Not. R. astr. Soc, 167, no. 2, 393411.Google Scholar
Lloyd Evans, T. (1976). Red variables in the central bulge of the Galaxy. Mon. Not. R. astr. Soc, 174, no. 1, 16984.Google Scholar
Lloyd Evans, T. (1980). Spectra of red supergiant variables in the SMC. Mon. Not. R. astr. Soc, 193, no. 2, 3336.Google Scholar
Lloyd Evans, T. (1983a). Observations of red variable stars in globular clusters. Mon. Not. R. astr. Soc, 204, no. 3, 96173.Google Scholar
Lloyd Evans, T. (1983b). Abundance sensitive parameters for red giants in globular clusters. Mon. Not. R. astr. Soc, 204, no. 3, 94559.Google Scholar
Lloyd Evans, T. (1983c). S stars in ω Centauri. Mon. Not. R. astr. Soc, 204, no. 3, 97584.Google Scholar
Lloyd Evans, T. (1984). Are there S stars in galactic globular clusters? Mon. Not. R. astr. Soc, 209, no. 4, 82539.Google Scholar
Lloyd Evans, T. (1985a). Bright red variables of large amplitude in the Magellanic Clouds. Mon. Not. R. astr. Soc, 212, no. 4, 95573.Google Scholar
Lloyd Evans, T. (1985b). Circumstellar material and the light variations of RV Tauri stars. Mon. Not. R astr. Soc., 217, no. 2, 493506.Google Scholar
Lloyd Evans, T. (1987). Slow variability and circumstellar shells of red variable stars. In Circumstellar Matter, ed Appenzeller, I. & Jordan, C., pp 5412. (IAU Symp. 122). Dordrecht: Reidel. Google Scholar
Lloyd Evans, T. & Catchpole, R.M. (1988). The Westerlund-Olander sample of S stars in the southern Milky Way. Mon. Not. R. astr. Soc , submitted.Google Scholar
Lloyd Evans, T., Glass, I.S. & Catchpole, R.M. (1988). Long-period variables in the Small Magellanic Cloud. Mon. Not. R. astr. Soc., 231, no. 3, 77381.Google Scholar
Lloyd Evans, T. & Menzies, J.W. (1973). Red variable stars in metal-rich globular clusters. In Variable Stars in Globular Clusters and in Related Systems, ed J.D. Fernie, pp 15163. Dordrecht: Reidel. Google Scholar
Lloyd Evans, T. & Menzies, J.W. (1977). Near infrared photometry of globular clusters-Ill. The metal-rich clusters. Mon. Not. R. astr. Soc, 178, no. 1, 16393.Google Scholar
Mayall, M.W. (1965). Variable star notes. J.R. astr. Soc. Can., 59, no. 5, 2458.Google Scholar
Menzies, J.W. & Whitelock, P.A. (1985). A period-luminosity relation for Mira variables in globular clusters. Mon. Not. R. astr. Soc, 212, no. 4, 78397.Google Scholar
Merrill, P.W. (1940). Spectra of Long Period Variables. Chicago: University of Chicago Press.Google Scholar
Merrill, P.W. (1960). Spectra of long-period variables. In Stellar Atmospheres, ed J.L. Greenstein, pp 50929. (Stars and Stellar Systems, v.6). Chicago: The University of Chicago Press. Google Scholar
Merrill, P.W. & Greenstein, J.L. (1958). Double absorption lines in the spectrum of R Andromedae. Publs. astr. Soc. Pacific, 7JJ, no. 412, 98101.Google Scholar
Morris, S. & Wyller, A.A. (1967). Molecular dissociative equilibria in carbon stars. Astrophys. J., 150, no. 3, 877907.Google Scholar
Neugebauer, G. & Leighton, R.B. (1969). Two-Micron Sky Survey. Washington, D.C.: NASA SP-3047.Google Scholar
Olnon, F.M., Baud, B., Habing, H.J., de Jong, T., Harris, S. & Pottasch, S.R. (1984). IRAS observations of 0H/IR stars. Astrophys. J. , 278, no. 1, L41-3.Google Scholar
Payne-Gaposchkin, C. (1951). The intrinsic variable stars. Jn Astrophysics, ed J.A. Hynek, pp 495-525. New York: McGraw-Hill.Google Scholar
Payne-Gaposchkin, C. (1954). The red variable stars. Ann. Harvard College Obs., 113, no. 4, 191208.Google Scholar
Payne-Gaposchkin, C. (1971). The variable stars of the Large Magellanic Cloud. Smithsonian Contr. Astrophys., no. 13, 141.Google Scholar
Payne-Gaposchkin, C. & Gaposchkin, S. (1966). Variable Stars in the Small Magellanic Cloud. Smithsonian Contr. Astrophys., no. 9, 1205.Google Scholar
Reid, N., Glass, I.S. & Catchpole, R.M. (1988). A survey for red variables in the LMC. Mon. Not. R. astr. Soc, 232, no. 1, 5379.Google Scholar
Robertson, B.S.C. & Feast, M.W. (1981). The bolometric, infrared and visual absolute magnitudes of Mira variables. · Mon. Not. R. astr. Soc, JL96, no. 1, 11120.Google Scholar
Rosino, L. (1951). The spectra of variables of the RV Tauri and yellow semiregular types. Astrophys. J., 113, no. 1, 6071.Google Scholar
Rowan-Robinson, M., Lock, T.D., Walker, D.W. & Harris, S. (1986). Models for IRAS observations of circumstellar dust shells around late-type stars. Mon. Not. R. astr. Soc, 222, no. 2, 27386.Google Scholar
Shapley, H. & Nail, V. McK. (1951). Magellanic Clouds II: Supergiant red variable stars in the Small Cloud. Proc Nat. Acad. Sci., 37, no. 2” 138-45.Google Scholar
Smak, J.I. (1966). The long-period variable stars. Ann. Rev. Astr. Astrophys., 4·, 19-34.Google Scholar
Thackeray, A.D. (1937). The excitation of emission lines in late-type variables. Astrophys. J., 86, no. 5, 499508.Google Scholar
Tsuji, T. (1981a). Effective temperature scale of N-type carbon stars. J. Astrophys. Astr., 2, no. 1, 95113.Google Scholar
Tsuji, T. (1981b). Spectra, colours and HR diagram of cool carbon stars. J. Astrophys. Astr., 2, no. 3, 25376.Google Scholar
Tsuji, T., Unno, W., Kaifu, N., Izumiura, H., Ukita, N., Cho, S. & Koyama, K. (1988). V Hydrae; a carbon star in transformation to a bipolar nebula. Astrophys. J., 327, no. 1, L23-6.Google Scholar
Van der Veen, W.E.C.J. & Habing, H.J. (1988). The IRAS two-colour diagram as a tool for studying late stages of stellar evolution. Astr. Astrophys., 194, no. 1, 12534.Google Scholar
Vardya, M.S., de Jong, T. & Willems, F.J. (1986). IRAS low-resolution spectrograph observations of silicate and molecular SiO emission in Mira variables. Astrophys. J. , 304, no. 1, L29-32.Google Scholar
Wallerstein, G. (1985). Stellar stratigraphy. Publs. astr. Soc. Pacific, 97, no. 596, 9941000.Google Scholar
Whitelock, P.A., Feast, M.W. & Catchpole, R.M. (1986). 3HKL observations of IRAS sources-Ill. The galactic bulge. Mon. Not. R. astr. Soc, 222, no. 1, 19.Google Scholar
Whitelock, P.A., Pottasch, S.R. & Feast, M.W. (1987). Evidence for pulsationally driven mass-loss from Mira- variables. In Late Stages of Stellar Evolution, ed Kwok, S. & Pottasch, S.R., pp 269-72. Dordrecht: Reidel. Google Scholar
Whitford, A.E. & Rich, R.M., (1983). Metal content of K giants in the nuclear bulge of the Galaxy. Astrophys. J., 274, no. 2, 72332.Google Scholar
Willems, F.J. (1986). IRAS observations of carbon stars. In Light on Dark Matter, ed F.P. Israel, pp 113-8. Dordrecht: Reidel. Google Scholar
Willson, L.A., Wallerstein, G. & Pilachowski, C.A. (1982). Atmospheric kinematics of high velocity long period variables. Mon. Not. R. astr. Soc, 198, no. 2, 483516.Google Scholar
Wing, R.F. (1985). Photometric properties of peculiar red giants. In Cool Stars with Excesses of Heavy Elements, ed Jaschek, M. & Keenan, P.C., pp 61-85. Dordrecht: Reidel. Google Scholar
Wood, P.R. (1975). Red variables. Jjn Multiple Periodic Variable Stars, ed Fitch, W.S., pp 69-84. Dordrecht: Reidel. Google Scholar
Wood, P.R. & Bessell, M.S. (1983). Long-period variables in the galactic bulge. Astrophys. J., 265, no. 2, 74859.Google Scholar
Wood, P.R., Bessell, M.S. & Fox, M.W. (1983). Long-period variables in the Magellanic Clouds. Astrophys. J., 272, no. 1, 99115.Google Scholar
Wood, P.R., Bessell, M.S. & Paltoglou, G. (1985). Long-period variables in the Bar of the Large Magellanic Cloud. Astrophys. J., 290, no. 2, 47786.Google Scholar
Woolf, N.J. & Ney, E.P. (1969). Circumstellar infrared emission from cool stars. Astrophys. J., 155, no. 3, L181-4.Google Scholar
Yorka, S.B. & Keenan, P.C. (1985). Spectral classification and the relations between peculiar giants. In Cool Stars with Excesses of Heavy Elements, ed Jaschek, M. & Keenan, P.C., pp 15-8. Dordrecht: Reidel. Google Scholar