No CrossRef data available.
Published online by Cambridge University Press: 12 April 2016
We have begun a program to measure oscillator strengths of autoionizing resonances that result from a transition in the VUV between a laser excited initial state and a final state in which a core electron is promoted. These measurements demonstrate a new technique to combine synchrotron radiation, laser pumping, and photoelectron spectroscopy.
Measurements of the energy positions of autoionizing resonances have been honed to a fine art over the past 50 years. Total cross section measurements and the parameters that describe autoionizing resonances have been determined. Most of these studies have been made from the dipole allowed ground state. Recently autoionizing resonances have been observed from excited initial states and from ion initial states. We have heard several talks, at this meeting which described some of this type of research. In the measurements to be described in this paper, laser radiation is combined with synchrotron radiation, as shown schematicaly in Figure 1, to study the photoionization from excited initial states to continuum final states or to autoionizing final states. Continuum radiation from the Aneau de Collisions d’Orsay (ACO), which is installed at the Universite de Paris-Sud, in Orsay France, is monochromatized by a toroidal grating monochromator (TGM) and is focused by a toroidal output mirror on to a weakly collimated sodium beam emanating from a furnace mounted on the axis of a cylinderical mirror analyzer (CMA). This electron spectrometer is used to study the kinetic energy distribution of the ejected photoelectrons produced by the interaction of the photon beam with the focused synchrotron radiation.