Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T20:40:08.648Z Has data issue: false hasContentIssue false

Numerical Simulations of MHD Winds from Accretion Disks

Published online by Cambridge University Press:  12 April 2016

James M. Stone*
Affiliation:
Department of Astronomy, University of Maryland, College Park, MD 20742–2421, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The contributions that time-dependent multidimensional numerical simulations have made to our understanding of MHD winds from accretion disks are reviewed. Current simulations can be divided into four categories: (1) axisymmetric global models, (2) axisymmetric simulations of the wind only, (3) three-dimensional local models, and (4) threedimensional global models. Results from each category are discussed. Current results indicate that weakly magnetized disks are turbulent, and that this turbulence is responsible for dynamo action which amplifies the disk field. These effects may have important consequences for the production of MHD winds. We discuss the feasibility of fully three-dimensional global models that can capture these effects in the future.

Type
Part 10. Accretion Disks and Outflows
Copyright
Copyright © Astronomical Society of the Pacific 1997

References

Balbus, S.A., & Hawley, J.F. 1991, ApJ, 376, 214 (BH)Google Scholar
Balbus, S.A., & Hawley, J.F. 1992, ApJ, 400, 610 Google Scholar
Bell, A.R., & Lucek, S.G. 1995, MNRAS, 277, 1327.Google Scholar
Brandenburg, A., Nordlund, A., Stein, R.F., & Torkelsson, U. 1995, ApJ, 446, 741.Google Scholar
Blandford, R.D., & Payne, D.G. 1982, MNRAS, 199, 883.Google Scholar
Eggum, G.E., Coroniti, F.V., & Katz, J.I. 1988, ApJ, 330, 142.Google Scholar
Fukue, J. 1990, PASJ, 42, 793.Google Scholar
Goodman, J., & Xu, G. 1994, ApJ, 432, 213.Google Scholar
Hawley, J.F., & Balbus, S.A. 1991, ApJ 376, 223.Google Scholar
Hawley, J.F., & Balbus, S.A. 1992, ApJ 400, 595.Google Scholar
Hawley, J.F., Gammie, C.F., & Balbus, S.A., 1995, ApJ, 440, 742.Google Scholar
Hawley, J.F., Gammie, C.F., & Balbus, S.A., 1996, ApJ, 464, 690.Google Scholar
Hawley, J.F., & Stone, J.M. 1996, in preparation.Google Scholar
Heyvaerts, J., & Norman, C.A. 1989, ApJ, 347, 435.Google Scholar
Icke, V. 1980, AJ, 85, 329.Google Scholar
Lovelace, R.V.E., Wang, J.C., & Sulkanen, M.E. 1987, ApJ, 315, 504.Google Scholar
MacLow, M.-M., Norman, M.L., Königl, A., & Wardle, M. 1995, ApJ, 442, 726.Google Scholar
Matsumoto, R. et al 1996, ApJ, 461, 115.Google Scholar
Ouyed, R., Pudritz, R.E., & Stone, J.M., 1996, submitted.Google Scholar
Pelletier, G., & Pudritz, R.E., 1989, ApJ, 394, 117.Google Scholar
Shibata, K., & Uchida, Y. 1986, PASJ, 38, 631.Google Scholar
Stone, J.M., & Norman, M.L. 1994, ApJ, 433, 746.Google Scholar
Stone, J.M., Hawley, J.F., Gammie, C.F., & Balbus, S.A. 1996, ApJ, 463, 656.Google Scholar
Uchida, Y., & Shibata, K. 1985, PASJ, 37, 515.Google Scholar
Ustyugova, G.V., et al 1995, ApJ, 439, L39.Google Scholar
Wardle, M., & Königl, A., 1993, ApJ, 410, 218.Google Scholar