Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-05T17:11:58.829Z Has data issue: false hasContentIssue false

Numerical Experiments on the Decay of Three-Body Systems

Published online by Cambridge University Press:  12 April 2016

M. J. Valtonen
Affiliation:
Institute of Astronomy University of Cambridge
S. J. Aarseth
Affiliation:
Institute of Astronomy University of Cambridge

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Numerical results are presented for calculations of stellar three-body systems. Among the triple systems with similar initial separations between each of the stars, the equal-mass systems are most stable with typical half-lives of about 40 crossing times. In the other extreme, systems with a very small total angular momentum or a large mass difference have half-lives of only about 10 crossing times. The escaping star is usually the lightest one, while the escape probability for the heaviest star approaches zero when its mass exceeds the combined mass of the other two stars by more than a factor of about 5. The final binary becomes very eccentric (ē ≳ 0.8) when the three stars are restricted to a plane and do not have a very high total angular momentum, or when the total angular momentum is very small.

Resumen

Resumen

Se presentan resultados numéricos de cálculos de sistemas de tres cuerpos estelares. De entre los sistemas triples con separaciones iniciales análogas entre cada una de las estrellas, los sistemas de masas iguales son los más estables, con vidas medias típicas de aproximadamente 40 tiempos de cruce. En el otro extremo, sistemas con muy pequeño momento angular total o bien con una gran diferencia de masa, tienen vidas medias de sólo 10 tiempos de cruce aproximadamente. La estrella que escapa es normalmente la menos masiva, mientras que la probabilidad de escape para la más “pesada” tiende a cero cuando su masa excede la masa combinada de las otras dos estrellas por un factor de 5. La binaria resultante se hace muy excéntrica (ē ≳ 0.8) cuando las tres estrellas están restringidas a un plano y no poseen un momento angular total muy grande, o bien cuando el momento angular total es muy pequeño.

Type
Session 5
Copyright
Copyright © Otto G. Franz and Paris Pismis 1977

References

Aarseth, S. J. 1971, Ap. and Space Sci., 14, 110.Google Scholar
Agekyan, T. A., and Anosova, Z. P. 1968, Astrojizika, 4, 11.Google Scholar
Harrington, R. S. 1972, Celes. Mech., 6, 322.Google Scholar
Heggie, D. C. 1973, in Recent Advances in Dynamical Astronomy, eds. Tapley, B. D. and Szebehely, V., (Dordrecht: D. Reidel), 34.CrossRefGoogle Scholar
Heggie, D. C. 1975, M.N.R.A.S., 173, 729.Google Scholar
Saslaw, W. C., Valtonen, M. J., and Aarseth, S. J. 1974, Ap. J., 190, 253.Google Scholar
Valtonen, M. J. 1974, Proc. IAU Symposium No. 62, The Stability of the Solar System and of Small Stellar Systems, ed. Kozai, Y. (Dordrecht: D. Reidel), 211.Google Scholar
Valtonen, M. J. 1975, Mem. R.A.S., 80, 77.Google Scholar
Valtonen, M. J. 1976, to be published.Google Scholar
van Albada, T. S. 1968, Bull. Astr. Inst. Netherl., 19, 479.Google Scholar