Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T08:54:29.810Z Has data issue: false hasContentIssue false

The Nature of the Energy Source in LINERs

Published online by Cambridge University Press:  12 April 2016

L. Colina
Affiliation:
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
A. Koratkar
Affiliation:
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

LINERs are found in ~30% of all bright galaxies, including luminous infrared galaxies. They form a heterogeneous class powered by a variety of ionizing mechanisms such as low-luminosity AGNs, starbursts, shocks, or any combination of these.

In early-type spirals, LINERs are powered by a low-luminosity AGN, or by an AGN surrounded by circumnuclear star-forming regions. In luminous infrared galaxies, LINERs are powered by starbursts with associated wind-related extended shocks, and an AGN may play a minor role, if any. LINERs in some FR I radio galaxies show a strong evidence for the presence of a massive central black hole, and there are indications for the existence of shocks in the nuclear disks of these galaxies. Yet, the dominant ionizing mechanism for LINERs in radio-quiet ellipticals and FR I host galaxies is still unclear.

Multifrequency high spatial resolution imaging and spectroscopy are essential to discriminate among the different ionizing mechanisms present in LINERs.

Type
X. Unification of Active Galaxies and Other Global Issues
Copyright
Copyright © Astronomical Society of the Pacific 1997

References

Baum, S., Zirbel, E., & O’Dea, C. 1995, ApJ, 451, 88.CrossRefGoogle Scholar
Binette, L., Magris, G., Stasinska, G., & Bruzual, G. 1994, A&A, 292, 13.Google Scholar
Barth, A., Ho, L., Filippenko, A., & Sargent, W. 1996, in The Physics of LIN-ERs in View of Recent Observations, ed. Eracleous, M., Koratkar, A., Leitherer, C., & Ho, L. (San Francisco: ASP), p. 153.Google Scholar
Bietenholz, M., et al. 1996, ApJ, 457, 60.Google Scholar
Bower, G., Wilson, A., Heckman, T., & Richstone, D. 1996, AJ, 111, 1901.Google Scholar
Colina, L., & Pérez-Olea, D. 1995, MNRAS, 277, 845.Google Scholar
De Juan, L., Colina, L., & Golombek, D. 1996, A&A, 305, 776.Google Scholar
Dopita, M., et al. 1996, in The Physics of LINERs in View of Recent Observations, ed. Eracleous, M., Koratkar, A., Leitherer, C., & Ho, L. (San Francisco: ASP), p. 44.Google Scholar
Dopita, M., & Sutherland, R. 1995, ApJ, 455, 468.Google Scholar
Ferland, G., & Netzer, H. 1983, ApJ, 264, 105.CrossRefGoogle Scholar
Ferrarese, L., Ford, H., & Jaffe, W. 1996, ApJ, in press.Google Scholar
Filippenko, A. 1993, in The Nearest Active Galaxies, ed. Beekman, J., Colina, L., & Netzer, H., CSICMadrid, p. 99.Google Scholar
Filippenko, A., & Terlevich, R. 1992, ApJ, 397, L79.Google Scholar
Ford, H., et al. 1994, ApJ, 435, L27.CrossRefGoogle Scholar
Goudfrooij, P., Hansen, L., Jorgensen, H.E., & Norgaard-Nielsen, H.U. 1994, A&AS, 105, 341.Google Scholar
Harms, R., et al. 1994, ApJ, 435, L35.Google Scholar
Heckman, T. 1980, A&A, 87, 152.Google Scholar
Heckman, T., Armus, L., & Miley, G. 1990, ApJS, 74, 833.Google Scholar
Ho, L., Filippenko, A., & Sargent, W. 1993, ApJ, 417, 63.Google Scholar
Ho, L. 1996, in The Physics of LINERs in View of Recent Observations, ed. Eracleous, M., Koratkar, A., Leitherer, C., & Ho, L. (San Francisco: ASP), p. 103.Google Scholar
Ho, L., Filippenko, A., & Sargent, W. 1996, ApJ, 462, 183.Google Scholar
Hummel, E., van der Hulst, J., & Keel, W. 1987, A&A, 172, 32.Google Scholar
Jaffe, W., Ford, H., Ferrarese, L., van der Bosch, F., & O’Connell, R. 1993, Nature, 364, 213.Google Scholar
Jaffe, W., Ford, H., Ferrarese, L., van der Bosch, F., & O’Connell, R. 1996, ApJ, 460, 214.Google Scholar
Koratkar, A., Deustua, S., Heckman, T., Filippenko, A., Ho, L., & Rao, M. 1995, ApJ, 440, 132.Google Scholar
Macchetto, F., Pastoriza, M., Caon, N., Sparks, W.B., Giavalisco, M., Bender, R., & Capaccioli, M. 1996, A&A, in press.Google Scholar
Maoz, D., Filippenko, A., Ho, L., Rix, H., Bahcall, J., Schneider, D., & Macchetto, D. 1995, ApJ, 440, 91.Google Scholar
Pérez-Olea, D., & Colina, L. 1996, ApJ, in press.Google Scholar
Phillips, M., Jenkins, C., Dopita, M., Sadler, E., & Binette, L. 1986, AJ, 91, 1062.Google Scholar
Phillips, M., Pagel, B., Edmunds, M., & Díaz, A. 1984, MNRAS, 210, 701.Google Scholar
Reichert, G.A., Puchnarewicz, E.M., Filippenko, A., Mason, K.O., Branduardi-Raymont, G., & Wu, C.C. 1993, in The Nearest Active Galaxies, ed. Beekman, J., Colina, L., & Netzer, H., CSICMadrid, p. 85.Google Scholar
Shields, J.C. 1992, ApJ, 399, L27.Google Scholar
Sparks, W.B., Biretta, J.A., & Macchetto, F. 1996, ApJ, in press.Google Scholar
Storchi-Bergmann, T., Eracleous, M., Livio, M., Wilson, A., Filippenko, A., & Halpern, J. 1995, ApJ, 443, 617.Google Scholar
Veilleux, S., Cecil, G., Bland-Hawthorn, J., Tully, R., Filippenko, A., & Sargent, W. 1994, ApJ, 433, 48.Google Scholar
Veilleux, S., & Osterbrock, D. 1987, ApJS, 63, 295.Google Scholar
Veilleux, S., Kim, D., Sanders, D., Mazzarella, J., & Soifer, B. 1995, ApJS, 98, 171.Google Scholar