Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-12-02T20:45:14.410Z Has data issue: false hasContentIssue false

Molecules in the Sun and Molecular Data

Published online by Cambridge University Press:  12 April 2016

Nicolas Grevesse
Affiliation:
Institut d'Astrophysique, Université de Liège 5, avenue de Cointe, B-4000 Liège, Belgium
A. Jacques Sauval
Affiliation:
Observatoire Royal de Belgique 3, avenue Circulaire, B-1180 Bruxelles, Belgium

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Molecules play a unique role in solar spectroscopy in allowing to derive, with high accuracy, the temperature structure of the photospheric layers from where the solar spectrum in the near ultraviolet, visible and infrared emerges. They also allow to observe the heterogeneous structure of the outer layers as well as the subtle convective motions in the layers just above the solar convection zone. Molecules play also a unique role in defining the solar chemical composition, at least as far as the very important elements like carbon, nitrogen and oxygen are concerned. They also offer the unique opportunity to derive meaningful isotopic ratios for C and O. Although we shall not deal with sunspots in the present review, it has to be recalled that molecules are the only tracers to derive the solar abundances of CI and F from the rotation-vibration lines of HC1 and HF present in the infrared sunspot spectra (Hall & Noyes 1972; Hall & Noyes 1969).

On the other hand, the Sun itself offers a unique opportunity to produce molecular transitions, in local thermodynamic equilibrium (LTE), at rather high temperatures (T ∼ 5000 K), higher in any case than in the laboratory, often in non LTE (see review by Johnson in this volume). Therefore, new lines and new transitions of higher excitation appear in the solar spectrum allowing to use the Sun as a “permanent laboratory source” in order to refine the molecular constants. Furthermore, the solar photosphere, where we believe the physical conditions and physical processes are better known than in any other stars, offers a unique possiblity to test basic molecular data like dissociation energies and transition probabilities.

Type
Research Article
Copyright
Copyright © Springer-Verlag 1994

References

Anders, E., Grevesse, N., 1989, Geochim. Cosmochim. Acta, 53, 197 Google Scholar
Bartoe, J.-D., Brueckner, G.E., Nicolas, K.R., Sandlin, G.D., Van Hoosier, M.E., Jordan, C., 1979, MNRAS, 187, 463 Google Scholar
Bauschlicher, C.W., Langhoff, S.R., Taylor, P.R., 1988, Astrophys. J., 332, 531 CrossRefGoogle Scholar
Biémont, E., Hibbert, A., Godefroid, M., Vaeck, N., Fawcett, B.C., 1991, Astrophys. J., 375, 818 Google Scholar
Blatherwick, R.D., Murcray, F.J., Murcray, F.H., Goldman, A., Murcray, D.G., 1983, Atlas of South Pole IR Solar Spectra, Dept. of Physics, Univ. of DenverGoogle Scholar
Blomme, R., Sauvai, A.J., Grevesse, N., 1993, in “Infrared Solar Physics“, eds. Rabin, D., Jefferies, J.T. and Lindsey, C., Kluwer, Dordrecht (in press)Google Scholar
Bohn, H.U., Wolf, B.E., 1984, Astron. Astrophys., 130, 202 Google Scholar
Brekke, P., 1993, An Ultraviolet Spectral Atlas of the Sun Between 1190 and 1730 A, Astrophys. J. Suppl. 87, 1 (July, 1993)Google Scholar
Carlson, T.A., Duric, N., Erman, P., Larsson, M., 1978, J. Phys. B., 11, 3667 Google Scholar
Carroll, P.K., McCormack, P., O'Connor, S., 1976, Astrophys. J., 208, 903 Google Scholar
Cartwright, D.C., Hay, P.J., 1982, Astrophys. J., 257, 383 Google Scholar
Chase, M.W., Davies, C.A., Downey, J.R., Frurip, D.J., McDonald, R.A., Syverud, A.N., 1985, JANAF Thermochemical Tables, 3d ed. J. Phys. Chem. Ref. Data 14, Sup.lGoogle Scholar
Conley, C., Halpern, J.B., Wood, J., Vaughn, C., Jackson, W.M., 1980, Chem. Phys. Lett. 73, 224 Google Scholar
Costes, M., Naulin, C., Dorthe, G., 1990, Astron. Astrophys., 232, 270 Google Scholar
Davis, S.P., Shortenhaus, D., Stark, G., Engleman, R. Jr., Phillips, J.G., Hubbard, R.P., 1986, Astrophys. J., 303, 892 and 307, 414 Google Scholar
de Jager, C., 1959, in Handbuch der Physik, ed. Flügge, S., Vol. LII: Astrophysics III: the Solar System, Springer Verlag, p. 80 Google Scholar
Delbouille, L., Roland, G., Neven, L., 1973, Photometric Atlas of the Solar Spectrum from 3000 to 10000 Ä, Institut d'Astrophysique, Université de LiègeGoogle Scholar
Delbouille, L., Roland, G., Brault, J.W., Testerman, L., 1981, Photometric Atlas of the Solar Spectrum from 1850 to 10000 cm-1 , Kitt Peak National Observatory, Tucson Google Scholar
Dravins, D., Larsson, B., Nordlund, A., 1986, Astron. Astrophys., 158, 83 Google Scholar
Dravins, D., Lindegren, L., Nordlund, A., 1981, Astron. Astrophys., 96, 345 Google Scholar
Eres, D., Gurnick, M., Mc, Donald J.D., 1984, I. Chem. Phys. 81, 5552 Google Scholar
Farmer, C.B., Norton, R.H., 1989, A High-Resolution Atlas of the Infrared Spectrum of the Sun and the Earth Atmosphere from Space, Vol. 1, The Sun, NASA Ref. Publ. 1224, Washington Google Scholar
Farrenq, R., Guelachvili, G., Sauvai, A.J., Grevesse, N., Farmer, C.B., 1991, J. Mol. Spectrosc. 149, 375 CrossRefGoogle Scholar
Geller, M., 1992, A High-Resolution Atlas of the Infrared Spectrum of the Sun and the Earth Atmosphere from Space, Vol. III, Key to Identification of Solar Features, NASA Ref. Publ. 1224, Washington Google Scholar
Geller, M., Sauvai, A.J., Grevesse, N., Farmer, C.B., Norton, R.H., 1991, Astron. Astrophys. 249, 550 Google Scholar
Goldman, A., Blatherwick, R.D., Murcray, F.J., Van Allen, J.W., Murcray, F.H., Murcray, D.G., 1987, New Atlas of Stratospheric IR Absorption Spectra, Vol. I: Line positions and and Identifications; Vol. II: The Spectra, Dept. of Physics, Univ. of DenverGoogle Scholar
Goldman, A., Blatherwick, R.D., Kosters, J.J., Murcray, F.J., Murcray, F.H., Murcray, D.G., 1992, Atlas of Very High Resolution Stratospheric IR Absorption Spectra, Dept. of Physics, Univ. of DenverGoogle Scholar
Grevesse, N., Noels, A., 1993, in “Origin and Evolution of the Elements“, eds. Prant-zos, N., Vangioni-Flam, E., Cassé, M., Cambridge University Press, in pressGoogle Scholar
Grevesse, N., Sauvai, A.J., 1970 Astron. Astrophys. 9, 232 Google Scholar
Grevesse, N., Sauvai, A.J., 1971a, J. Quant. Spectrosc. Radiât. Transfer 11, 65 Google Scholar
Grevesse, N., Sauvai, A.J., 1971b, Astron. Astrophys. 14, 477 Google Scholar
Grevesse, N., Sauvai, A.J., 1991, in “The Infrared Spectral Region of Stars”, eds. Jaschek, C. and Andrillat, Y., Cambridge University Press, p. 215 Google Scholar
Grevesse, N., Sauvai, A.J., 1992, Rev. Mexicana Astron. Astrof. 23, 71 Google Scholar
Grevesse, N., Noels, A., Sauvai, A.J., 1992, in “First SOHO Workshop: Coronal Streamers, Coronal Loops and Coronal and Solar Wind Composition”, ESA SP-348, p.305 Google Scholar
Grevesse, N., Sauvai, A.J., Blomme, R., 1993, in “Infrared Solar Physics”, eds. Rabin, D., Jefferies, J.T. and Lindsey, C., Kluwer, Dordrecht (in press)Google Scholar
Grevesse, N., Sauvai, A.J., van Dishoeck, E.F., 1984, Astron. Astrophys., 141, 10 Google Scholar
Grevesse, N., Lambert, D.L., Sauvai, A.J., van Dishoeck, E.F., Farmer, C.B., Norton, R.H., 1990 Astron. Astrophys., 232, 225 Google Scholar
Grevesse, N., Lambert, D.L., Sauvai, A.J., van Dishoeck, E.F., Farmer, C.B., Norton, R.H., 1991 Astron. Astrophys., 242, 488 Google Scholar
Gurvich, L.V. et al., 1978-1981, Termodynamicheskie Svoistva Individual’ nikh Veschev, Vol. 1-3, Eds Moscow: Soviet Acad. Sci. Google Scholar
Hall, D.N.W., Noyes, R.W., 1969, Astrophys. J. Letters, 4, 143 Google Scholar
Hall, D.N.W., Noyes, R.W., 1972, Astrophys. J. 175, L95 Google Scholar
Harris, M.J., Lambert, D.L., Goldman, A., 1987, MNRAS 224, 237 Google Scholar
Hibbert, A., Biémont, E., Godefroid, M., Vaeck, N. 1991, Astron. Astrophys. Suppi, 88, 505; J. Phys. B. 24, 3943 Google Scholar
Hibbert, A., Biémont, E., Godefroid, M., Vaeck, N. 1993, Astron. Astrophys. Suppi, 99, 179 Google Scholar
Hinkle, K. H., Lambert, D.L., 1975, MNRAS 170, 447 Google Scholar
Hishikawa, A., Karawajczyk, A., 1993, J. Mol. Spectrosc. 158, 479 Google Scholar
Holweger, H., Müller, E.A., 1974, Solar Physics 39, 19 Google Scholar
Huang, Y., Barts, S.A., Halpern, J.B., 1992, J. Phys. Chem. 96, 425 Google Scholar
Iglesias, C.A., Rogers, F.J., Wilson, B.G., 1992, Astrophys. J., 397, 717 Google Scholar
Irwin, A.W., 1981, Astrophys. J. suppi., 45, 621 Google Scholar
Irwin, A.W., 1987, Astron. Astrophys., 182, 348 Google Scholar
Irwin, A.W., 1988, Astron. Astrophys. Suppi, 74, 145 Google Scholar
Jackson, W.M., Payne, W., Halpern, J.B., Tang, X., 1982, Proc. Intern. Conf. on Lasers, p. 72 Google Scholar
Jørgensen, U.G., Larsson, M., 1990, Astron. Astrophys., 238, 424 Google Scholar
Kiselman, D., 1991, Astron. Astrophys., 245, L9 Google Scholar
Knowles, P.J., Werner, H.-J., Hay, P.J., Cartwright, D.C., 1988, J. Chem. Phys. 89, 7334 Google Scholar
Kotlár, A.J., Field, R.W., Steinfeld, J.I., Coxon, J.A. 1980, J. Mol. Spectrosc. 80, 86 Google Scholar
Kurucz, R.L., 1991, in Solar Interior and Atmosphere, eds Cox, A.N., Livingston, W.C., Matthews, M.S., The Univ. of Arizona Press, Tucson, p. 663 Google Scholar
Kurucz, R.L., 1992, Rev. Mexicana Astron. Astrof. 23, 181 Google Scholar
Kurucz, R.L., Furenlid, I., Brault, J.W., Testerman, L., 1984, Solar Flux Atlas from 296 to 1300 nm, National Solar Observatory, Tucson, Atlas Nr. 1Google Scholar
Lambert, D.L., 1978, MNRAS 182, 249 Google Scholar
Lambert, D.L., 1988, Publ. Astron. Soc. Paci﹜. 100, 1202 Google Scholar
Lambert, D.L., Mallia, E.A., 1970, MNRAS 148, 313 Google Scholar
Lambert, D.L., Gustafsson, B., Eriksson, K., Hinkle, K.H., 1986, Astrophys. J. 62, 373 Google Scholar
Larsson, M., Siegbahn, P.E.M., 1983, Chem. Phys. 76, 175 CrossRefGoogle Scholar
Larsson, M., Siegbahn, P.E.M., Agren, H., 1983, Astrophys. J. 272, 369 CrossRefGoogle Scholar
Lavendy, H., Gándara, G., Robbe, J.M., 1984, J. Mol. Spectrosc. 106, 395 Google Scholar
Livingston, W., Wallace, L., 1991, An Atlas of the Solar Spectrum in the Infrared from 1850 to 9000 cm-1 (1.1 to 5.4 µm), Technical Report 91-001, National Solar Observatory, Tucson Google Scholar
Lu, R., Huang, Y., Halpern, J.B., 1992, Astrophys. J.B., 395, 710 Google Scholar
Mahan, B.H., O'Keefe, A., 1981, Astrophys. J. 248, 1209 Google Scholar
Maltby, P., Avrett, E.H., Carlsson, M., Kjeldseth-Moe, O., Kurucz, R.L., Loeser, R., 1986, Astrophys. J. 306, 284 Google Scholar
Mélen, F., Grevesse, N., Sauvai, A.J., Farmer, C.B., Norton, R.H., Bredohl, H., Dubois, L., 1989, J. Mol. Spectrosc. 134, 305 Google Scholar
Moore, C.E., Minnaert, M.G.J., Houtgast, J., 1966, The Solar Spectrum 2935 Å to 8770 A, National Bureau of Standards Monograph 61Google Scholar
Moore, C.E., Tousey, R., Brown, C.M., 1982, The Solar Spectrum 3069 - 2095 A, Naval Research Laboratory, NRL Report 8653Google Scholar
Nadeau, D., 1968, Astrophys. J., 325, 480 Google Scholar
Rao, V.M., Rao, M.L.P. Rao, P.T., 1982, Phys. Rev. 26, 1765 Google Scholar
Rossi, S.C.F., Maciel, W.J., 1983, Astrophys. Space Sci., 96, 205 Google Scholar
Rossi, S.C.F., Maciel, W.J., Benevides-Soares, , 1985, Astron. Astrophy., 148, 93 Google Scholar
Sandlin, G.D., Bartoe, J.-D.F., Brueckner, G.E., Tousey, R., Van Hoosier, M.E., 1986, Astrophys. J. Suppl., 61, 801 CrossRefGoogle Scholar
Sauvai, A.J., 1969, Solar Physics 10, 319 Google Scholar
Sauvai, A.J., Tatum, J. B., 1984, Astrophys. J. Suppl, 56, 193 Google Scholar
Sauvai, A.J., Blomme, R., Grevesse, N., 1993 (in preparation)Google Scholar
Sauvai, A.J., Farrenq, R., Guelachvili, C., Grevesse, N., Farmer, C.B., Norton, R.H., 1992, Astron. Astrophys., 265, 355 Google Scholar
Sauvai, A.J., Grevesse, N., Brault, J.W., Stokes, G.M., Zander, R., 1984, Astrophys. J., 282, 330 Google Scholar
Scalo, J.M., Ross, J.E., 1976, Astron. Astrophys., 48, 219 Google Scholar
Seaton, M.J., Zeippen, C.J., Tully, J.A., Pradham, A.K., Mendoza, C., Hibbert, A., Berrington, K.A., 1992, Rev. Mexicana Astron. Astrof. 23, 19 Google Scholar
Sinha, K., Tripathi, B.M., 1986, Bull. Astron. Soc. India 14, 40 Google Scholar
Smith, W.H., 1971, J. Chem. Phys. 54, 1384 Google Scholar
Sneden, C., Lambert, D.L., 1982, Astrophys. J., 259, 381 Google Scholar
Swensson, J.W., Benedict, W.S., Delbouille, L., Roland, G., 1970, The Solar Spectrum from X 7Ą98 to \ 12016 - A table of Measures and Identifications, Mém. Soc. Roy. Sci. Liège 5Google Scholar
Taherian, M.R., Slanger, T.G., 1984, J. Chem. Phys. 81, 3814 Google Scholar
Tatum, J.B., 1988, Observatory 108, 55 Google Scholar
Tsuji, T., 1973, Astron. Astrophys., 23, 411 Google Scholar
Vernazza, J.E., Avrett, E.H., Loeser, R., 1976, Astrophys. J. Suppl., 30, 1 Google Scholar
Wallace, L., Hinckle, K., Livingston, W., 1993, An Atlas of the Photospheric spectrum from 8900 to 13600 cm-1 (7350 to 11230 Ā), Technical Report 93-001, National Solar Observatory, Tucson Google Scholar
Wannenmacher, E.A J., Lin, H., Jackson, W.M., 1990, J. Phys. Chem. 94, 6608 Google Scholar
Wing, R.F., Cohen, J., Brault, J.W., 1977, Astrophys. J., 216, 659 Google Scholar
Wöhl, H., Engvold, O., Brault, J.W., 1983, Inst. Theoret. Astrophys. Oslo Rep.56 Google Scholar