Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-27T03:38:09.376Z Has data issue: false hasContentIssue false

Molecular Outflows

Published online by Cambridge University Press:  12 April 2016

Ronald L. Snell*
Affiliation:
Five College Radio Astronomy Observatory and the Department of Physics and Astronomy, University of Massachusetts, Amherst

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The development of millimeter and submillimeter spectroscopy has allowed astronomers to probe the cold, dense component of the interstellar medium. This medium, primarily composed of gas in molecular form, is gravitationally bound into relatively distinct clouds that are sites of star formation within our Galaxy. The most ubiquitous tracers of these molecular clouds are the rotational transitions of carbon monoxide. Observations of CO emission have been commonly used to estimate the size, temperature, mass, and density of molecular clouds; in addition, the spectral line profiles can be used to study the internal dynamics of these clouds. Although the sound speed within molecular clouds is only about 0.2 km s−1, observed CO line widths are more typically 1 to 5 km s−1. Thus, the internal dynamics of molecular clouds are characterized by supersonic gas motions whose nature is poorly understood.

Type
III. Discs, Outflows, Jets and HH Objects
Copyright
Copyright © Springer-Verlag 1989

References

Cabrit, S., Goldsmith, P.F., and Snell, R.L. 1988, Ap. J., 334, 196.Google Scholar
Casoli, F., Dupraz, C., Gerin, M., Combes, F., and Boulanger, F. 1986, Astron. Astrophy., 169, 281.Google Scholar
Clark, F.O., and Laureijs, R.J. 1986, Astron. Astrophys., 154, L26.Google Scholar
Edwards, S., and Snell, R.L. 1982, Ap. J., 261, 151.Google Scholar
Edwards, S., Strom, S.E., Snell, R.L., Jarrett, T.H., Beichman, C.A., and Strom, K.M. 1986, Ap. J. (Letters), 307, L65.CrossRefGoogle Scholar
Fridlund, C.V.M., Sandqvist, Aa., Nordh, H.L., and Olofsson, G. 1989, Astron. Astrophys., 213, 310.Google Scholar
Fukui, Y. 1989, private communication.Google Scholar
Fukui, Y., Sugitani, H., Takaba, H., Iwata, T., Mizuno, A., Ogawa, H., and Kawabata, K 1986, Ap. J. (Letters), 311, L85.CrossRefGoogle Scholar
Glassgold, A.E., Mamon, G.A., and Huggins, P.J. 1989, Ap. J. (Letters), 336, L29.Google Scholar
Heyer, M.H., Snell, R.L., Goldsmith, P.F., and Myers, P.C. 1987, Ap. J., 321, 370.CrossRefGoogle Scholar
Hirano, N., Kameya, O., Nakayama, M., and Takakubo, K. 1988, Ap. J. (Letters), 327, L69.Google Scholar
Koo, B.-C. 1989, Ap. J., 337, 318.CrossRefGoogle Scholar
Lada, C.J. 1985, Ann. Rev. Astron. Astrophys., 23, 267.CrossRefGoogle Scholar
Levreault, R.M. 1985, Ph.D. thesis, University of Texas.Google Scholar
Lizano, S., Heiles, C., Rodriguez, L.F., Koo, B.—C, Shu, F.H., Hasegawa, T., Hayashi, S., and Mirabel, I.F. 1988, Ap. J., 328, 763.Google Scholar
Margulis, M., and Lada, C.J. 1986, Ap. J. (Letters), 309, L87.CrossRefGoogle Scholar
Margulis, M., Lada, C.J., and Snell, R.L. 1988, Ap. J., 333, 316.Google Scholar
Margulis, M., Lada, C.J., and Young, E.T. 1989, preprint.Google Scholar
Margulis, M., and Snell, R.L. 1989, Ap. J., in press.Google Scholar
Miller, G.E., and Scalo, J.M. 1979, Ap. J. Suppl, 41, 513.Google Scholar
Moriarty-Schieven, G.H., Snell, R.L., Strom, S.E., Schloerb, F.P., Strom, K.M., and Grasdalen, G.L. 1987, Ap. J., 319, 742.Google Scholar
Moriarty-Schieven, G.H., and Snell, R.L. 1988, Ap. J., 332, 364.Google Scholar
Moriarty-Schieven, G.H., and Snell, R.L. 1989, Ap. J., 338, 952.Google Scholar
Moriarty-Schieven, G.H., Snell, R.L., and Hughes, V. 1989, Ap. J., in press.Google Scholar
Mundt, R. 1988, in NATO—ASI on Formation and Evolution of Low Mass Stars, eds. Dupree, A. and Lago, M.T.V. (Dordrecht: Reidel).Google Scholar
Myers, P.C., Heyer, M., Snell, R.L., and Goldsmith, P.F. 1988, Ap. J., 324, 907.CrossRefGoogle Scholar
Rainey, R., White, G.J., Richaredson, K.J., Griffen, M.J., Cronin, N.J., Monterio, T.S., and Hilton, J. 1987, Astro. Astrophys., 179, 237.Google Scholar
Rodriguez, L.F., and Canto, J. 1983, Rev. Mexicana Astr. Ap., 8, 163.Google Scholar
Snell, R.L. 1987, in IAU Symposium 115, Star Forming Regions, eds. Peimbert, M. and Jugaku, J. (Dordrecht: Reidel) p. 213.CrossRefGoogle Scholar
Snell, R.L., and Edwards, S. 1981, Ap. J., 251, 103.CrossRefGoogle Scholar
Snell, R.L., Loren, R.B., and Plambeck, R.L. 1980, Ap. J. (Letters), 239, L17.Google Scholar
Snell, R. L., Bally, J., Strom, S.E., and Strom, K.M. 1985, Ap. J., 290, 587.Google Scholar
Snell, R.L., and Bally, J. 1986, Ap. J., 303, 683.CrossRefGoogle Scholar
Snell, R.L., Huang, Y.-L., Dickman, R.L., and Claussen, M.J. 1988, Ap. J., 325, 853.Google Scholar
Snell, R.L., Dickman, R.L., and Huang, Y.—L. 1989, in preparation.Google Scholar
Strom, K.M., Strom, S.E., Wolff, S.C., Morgan, J., and Wenz, M. 1986, Ap. J. Suppl, 62, 39.Google Scholar
Terebey, S., Vogel, S.N., and Myers, P.C. 1989, Ap. J., 340, 472.CrossRefGoogle Scholar
Uchida, Y., Kaifu, N., Shibata, K., Hayashi, S.S., and Hasagawa, T. 1987, in IAU Symposium 115, Star Forming Regions, eds. Peimbert, M. and Juku, J. (Dordrecht: Reidel), p. 287.Google Scholar