Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-09T09:53:37.168Z Has data issue: false hasContentIssue false

Models of fragment penetration and fireball evolution

Published online by Cambridge University Press:  02 August 2016

David A. Crawford*
Affiliation:
Experimental Impact Physics Department, Sandia National Laboratories, MS 0821, Albuquerque, NM 87185, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A new analytical model that is calibrated against numerical simulations performed with the CTH shock physics code provides a useful description of the entry of Periodic Comet Shoemaker-Levy 9 into the Jovian atmosphere. Mass loss due to radiative heating of fragments larger than 100 m in diameter is insignificant because of energy conservation during the ablative process. Nevertheless, radiative ablation is a major contributor to atmospheric energy deposition at high altitude and plays an important role in early-time fireball evolution. The analytical model provides the initial conditions from which fireball and plume evolution can be calculated using CTH. The results from these simulations suggest that if the tops of the plumes originated from a specific level of the Jovian atmosphere then maximum plume heights are independent of fragment size provided the fragments penetrated at least 30 km below this level. If the tops of the plumes originated from the visible cloud tops, then fragment masses greater than 4 x 1012 g, corresponding to 200 m diameter fully dense water ice, are required to explain the observations. If the plumes originated from the NH4SH layer then masses greater than 3 x 1013 g (400 m water ice) are required. The lateral extent and mass of the observable plume are functions of fragment size and contribute to the lateral extent and albedo of the debris patterns after re-impact with the atmosphere. The apparent gap between the central disturbance of the impact site and the inner front of the crescent-shaped ejecta may reflect the fragment's depth of penetration below the source layer of the visible ejecta.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

References

Asphaug, E. & Benz, W. 1994 Density of comet Shoemaker-Levy 9 deduced by modelling breakup of the parent ‘rubble pile’. Nature 370, 120124.Google Scholar
Biberman, L. M., Bronin, S. Ya. & Brykin, M. V. 1980 Moving of a blunt body through the dense atmosphere under conditions of severe aerodynamic heating and ablation. Acta Astronautica 7, 5365.CrossRefGoogle Scholar
Boslough, M. B., Crawford, D. A., Robinson, A. C. & Trucano, T. G. 1994a Watching for Fireballs on Jupiter. Eos 75, 305310.Google Scholar
Boslough, M. B., Crawford, D. A., Robinson, A. C. & Trucano, T. G. 1994b Mass and penetration depth of Shoemaker-Levy 9 fragments from time-resolved photometry. Geophysical Research Letters 21, 15551558.Google Scholar
Boslough, M. B., Crawford, D. A., Trucano, T. G., & Robinson, A. C. 1995 Numerical modeling of Shoemaker-Levy 9 impacts as a framework for interpreting observations. Geophysical Research Letters 22, 18211824.Google Scholar
Bronshten, V. A. 1983 Physics of Meteoric Phenomena. Reidel.Google Scholar
Ceplecha, Z., Spurny, P., Borovicka, J., & Keclikova, J. 1993 Atmospheric fragmentation of meteoroids. Astronomy and Astrophysics 279, 615626.Google Scholar
Chevalier, R. A. & Sarazin, C. L. 1994 Explosions of Infalling Comets in Jupiter's Atmosphere. Astrophysical Journal 429, 863875.Google Scholar
Chyba, C. F., Thomas, P. J. & Zahnle, K. J. 1993 The 1908 Tunguska explosion: atmospheric disruption of a stony asteroid. Nature 361, 4044.Google Scholar
Clarke, J. T., Prange, R., Ballester, G. E., Trauger, J., Evans, R., Rego, D., Stapelfeldt, K., Ip, W., Gerard, J.-C., Hammel, H., Ballav, M., Jaffel, L. B., Bertaux, J.-L., Crisp, D., Emerich, C., Harris, W., Horanyi, M., Miller, S., Storrs, A., & Weaver, H. 1995 HST Far-Ultraviolet Imaging of Jupiter During the Impacts of Comet Shoemaker-Levy 9. Science 267, 13021307.Google Scholar
Crawford, D. A., Boslough, M. B., Trucano, T. G. & Robinson, A. C. 1994 The Impact of Comet Shoemaker-Levy 9 on Jupiter. Shock Waves 47, 4750.CrossRefGoogle Scholar
Crawford, D. A., Boslough, M. B., Robinson, A. C., & Trucano, T. G. 1995a Dependence of Shoemaker-Levy 9 Impact Fireball Evolution on Fragment Size and Mass. Lunar and Planetary Science 26, 291292.Google Scholar
Crawford, D. A., Boslough, M. B., Trucano, T. G. & Robinson, A. C. 1995b The Impact of Periodic Comet Shoemaker-Levy 9 on Jupiter. Int. J. Impact Engin. 17, 253262.Google Scholar
Field, G. B. & Ferrara, A. 1995 The Behavior of Fragments of Comet-Shoemaker-Levy 9 in the Atmosphere of Jupiter. Astrophysical Journal 438, 957967.Google Scholar
Hammel, H. B., Beebe, R. F., Ingersoll, A. P., Orton, G. S., Mills, J. R., Simon, A. A., Choda, P., Clarke, J. T., De Jong, E., Dowling, T. E., Harrington, J., Huber, L. F., Karkoschka, E., Santori, C. M., Toigo, A., Yeomans, D., & West, R. A. 1995 HST Imaging of Atmospheric Phenomena Created by the Impact of Comet Shoemaker-Levy 9. Science 267, 12881296.CrossRefGoogle ScholarPubMed
Hills, J. G., & Goda, M. P. 1993 The Fragmentation of Small Asteroids in the Atmosphere. Astronomical Journal 105, 11141144.Google Scholar
Ivanov, B. A., & Yu, O. 1988 Simple Hydrodynamic Model of Atmospheric Breakup of Hypervelocity Projectiles. Lunar and Planetary Science 19, 535536.Google Scholar
Maclow, M. M., & Zahnle, K. 1994 Explosion Comet-Shoemaker-Levy 9 on Entry into the Jovian Atmosphere. Astrophysical Journal 434, L33L36.Google Scholar
McGlaun, J. M., Thompson, S. L., & Elrick, M. G. 1990 CTH - A three-dimensional shock-wave physics code. Int. J. Impact Engin. 10, 351.CrossRefGoogle Scholar
McKinnon, W. B., & Schenk, P. M. 1995 Estimates of comet fragment masses from impact crater chains on Callisto and Ganymede. Geophysical Research Letters 22, 18291832.Google Scholar
Noll, K. S., McGrath, M. A., Trafton, L. M., Atreya, S. K., Caldwell, J. J., Weaver, H. A., Yelle, R. V., Barnet, C., & Edgington, S. 1995 HST Spectroscopic Observations of Jupiter After Collision of Comet Shoemaker-Levy 9. Science 267, 13071313.Google Scholar
O'Keefe, J. D., Takata, T., & Ahrens, T. J. 1994 Penetration of Large Bolides into Dense Planetary Atmospheres—Role of Hydrodynamic Instabilities. Lunar and Planetary Science 25, 10231024.Google Scholar
Schultz, P. H. & Spudis, P. H. 1979 Evidence for ancient mare volcanism. Lunar and Planetary Science Conf. Proc. 10, 28992918.Google Scholar
Sekanina, Z. 1993 Disintegration phenomena expected during the forthcoming collision of periodic comet Shoemaker-Levy 9 with Jupiter. Science 262, 382.Google Scholar
Shoemaker, E. M., Hassig, P. J., & Roddy, D. J. 1995 Numerical simulations of the Shoemaker-Levy 9 impact plumes and clouds: A progress report. Geophysical Research Letters 22, 18251828.Google Scholar
Takata, T., O'Keefe, J. D., Ahrens, T. J., & Orton, G. S. 1994 Comet Shoemaker-Levy 9: Impact on Jupiter and Plume Evolution. Icarus 109, 319.CrossRefGoogle Scholar
Zahnle, K. J. 1992 Airburst Origin of Dark Shadows on Venus. Journal Geophysical Research 97, 10, 243-10, 255.Google Scholar
Zahnle, K. & Maclow, M. M. 1994 The Collision of Jupiter and Comet Shoemaker-Levy 9. Icarus 108, 117.Google Scholar
Zahnle, K. & Maclow, M. M., Lodders, K., & Fegley, B. Jr. 1995 Sulfur chemistry in the wake of comet Shoemaker-Levy 9. Geophysical Research Letters 22, 15931596.CrossRefGoogle Scholar
Zel'Dovich, Y. B. & Raizer, Y. P. 1967 Physics of Shock. Waves and High-Temperature Hydrodynamic Phenomena. Academic Press.Google Scholar