Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-14T14:16:11.040Z Has data issue: false hasContentIssue false

Model Atmospheres with Periodic Shocks

Published online by Cambridge University Press:  12 April 2016

G. H. Bowen*
Affiliation:
Astronomy Program, Physics Department, Iowa State University, Ames, Iowa 50011

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The pulsation of a long-period variable star generates shock waves which dramatically affect the structure of the star's atmosphere and produce conditions that lead to rapid mass loss. Numerical modeling of atmospheres with periodic shocks is being pursued to increase our understanding of the processes involved and of the evolutionary consequences for the stars. It is characteristic of these complex dynamical systems that most effects result from the interaction of various time-dependent processes. For example, rapid mass loss in the models is a joint consequence of the enormous extension of the atmosphere caused by shocks, and of radiation pressure on grains formed in the cool outer region; it is also affected by thermal relaxation processes, which determine the temperature distribution. The progress and significance of these modeling calculations will be reviewed.

Type
4. The Variability-Evolution Connection
Copyright
Copyright © Cambridge University Press 1989

References

Alexander, D. R., Johnson, H. R., & Rypma, R. L. (1983). Ap. J., 212, 773.Google Scholar
Beach, T. E., Willson, L. A., & Bowen, G. H. (1988). Ap. J., 223, 241.Google Scholar
Brugel, E. W., Beach, T. E., Willson, L. A., & Bowen, G. H. (1988). in IAU Colloquium No. 103, The Symbiotic Phenomenon, ed. Friedjung, M.. Dordrecht: Reidei. (In press)Google Scholar
Bowen, G. H. (1988a). Ap. J., 222, 299.CrossRefGoogle Scholar
Bowen, G. H. (1988b). in Pulsation and Mass Loss in Stars, ed. Stalio, R. & Willson, L. A.. Dordrecht: Reidel. p. 3.CrossRefGoogle Scholar
Castor, J. I. (1981). in Physical Processes in Red Giants, ed. Iben, I. Jr. Dordrecht: Reidel. p.275.Google Scholar
Hill, S. J. & Willson, L. A. (1979). Ap. J., 221, 1029.Google Scholar
Holzer, T. E. & MacGregor, K. B. (1985). in Mass Loss from Red Giants, ed. Morrris, M., Zuckerman, S. B.. Dordrecht: Reidel. p. 229.CrossRefGoogle Scholar
Ostlie, D. A. & Cox, A. N. (1986). Ap. J., 211: 864.Google Scholar
Weidemann, V. (1987). in Late Stages of Stellar Evolution, ed. Kwok, S. & Pottasch, S. R.. Dordrecht: Reidel. p. 347.CrossRefGoogle Scholar
Willson, L. A. (1982). in Pulsations in Classical and Cataclysmic Variable Stars, ed. Cox, J. P. & Hansen, C. J.. Boulder: JILA. p. 269.Google Scholar
Willson, L. A. (1988). in The Use of Pulsating Stars in Fundamental Problems of Astronomy, ed. Schmidt, E. G.. Cambridge: Cambridge University Press. (in press).Google Scholar
Willson, L. A. & Bowen, G. H. (1985). in Relations Between Chromospheric-Coronal Heating and Mass Loss in Stars, ed. Stalio, R. & Zirker, J. B.. Trieste: Osservatorio Astronomicodi Trieste, p. 127.Google Scholar
Willson, L. A. & Bowen, G. H. (1986a). Irish Astr. J., 12, 249.Google Scholar
Willson, L. A. & Bowen, G. H. (1986b). in Lecture Notes in Physics, Vol. 254, Cool Stars, Stellar Systems, and the Sun, ed. Zeilik, M. & Gibson, D. M.. Berlin: Springer-Verlag, p. 385.Google Scholar
Willson, L. A. & Hill, S. J. (1979). Ap. J., 223, 854.Google Scholar
Wood, P. R. (1979). Ap. J., 190, 609.Google Scholar