No CrossRef data available.
Published online by Cambridge University Press: 12 April 2016
We present a scenario of magnetic field (MF) evolution of newly-born neutron stars (NSs). Numerical calculations show that in the hot phase of young NSs the MF can be amplified by thermoelectric effects, starting from a moderately strong seed-field. Therefore, there is no need to assume a 1012 G dipole field immediately after the gravitational collapse of the supernova (SN) event. The widely accepted scenario for such a field to be produced by flux conservation during the collapse is critically discussed. Instead, it can be generated by amplification and selection effects in the first 104 yrs, and by the subsequent fast ohmic decay of higher multipole components, when the NS cools down.