Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-05T13:32:39.578Z Has data issue: false hasContentIssue false

Long-Term Predictions for Highly Eccentric Orbits

Published online by Cambridge University Press:  12 April 2016

José M. Ferrándiz
Affiliation:
Departamento de Matemática Aplicada a la Ingeniería, E.T.S. de Ingenieros Industriales, Universidad de Valladolid, 47011 Valladolid, Spain
M. Eugenia Sansaturio
Affiliation:
Departamento de Matemática Aplicada a la Ingeniería, E.T.S. de Ingenieros Industriales, Universidad de Valladolid, 47011 Valladolid, Spain
Jesús Vigo
Affiliation:
Departamento de Matemática Aplicada a la Ingeniería, E.T.S. de Ingenieros Industriales, Universidad de Valladolid, 47011 Valladolid, Spain

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Predictability in orbital behaviour of artificial satellites depends on several factors: the accuracy required, the particular dynamical models formulated, the sets of variables chosen to describe them, the numerical or analytical techniques used and, specially, the specific trajectories to be established. In this paper we address the problem of predictability for highly eccentric satellites with (J2 + J22)-perturbation, by using numerical techniques to integrate the equations of motion when expressed in different sets of regular variables.

Type
Part V General Celestial Mechanics and Stellar Dynamics
Copyright
Copyright © Nova Science Publishers 1993

References

[1] Burdet, C.A. (1969), Le mouvement Keplerien et les oscillateurs harmoniques, J.reine u. angew. Math., 238, 71.Google Scholar
[2] Ferrandiz, J.M. (1988), A General Canonical Transformation Increasing the Nimber of Variables with Application to the Two-Body Problem, Celest. Mech. 41, 343.Google Scholar
[3] Ferrandiz, J.M. and Sansaturio, M.E. (1990), Elemento de tiempo en variables de Ferrandiz, Actas XIV Jornadas-Hispano-Lusas de Matematicas, Junio 1989, Vol. III, 1231.Google Scholar
[4] Ferrandiz, J.M., Sansaturio, M.E. and Pojman, J. (1990), Increased Accuracy of Computations in the Main Satellite Problem through Linearization Methods., Celest. Mech. (Submitted).Google Scholar
[5] Ferrandiz, J.M., Sansaturio, M.E. and Vigo, J. (1990), On Long-Time Predictions of Satellite Orbits by Numerical Integration, in “Predictability, Stability and Chaos in N-Body Dynamical Systems”, Roy, A.E. Ed., Plenum publishing Corporation NATO ASI Series C. (In Press).Google Scholar
[6] Stiefel, E. and Scheifele, G. (1971), “Linear and Regular Celestial Mechanics”, Springer-Verlag, Berlin.Google Scholar