No CrossRef data available.
Published online by Cambridge University Press: 12 April 2016
We infer that detached binary white dwarfs with orbital periods of a few hours exist because we observe both their progenitors and their descendents. The binary LB 3459 has an orbital period of 6.3 hr and contains a pair of hot subdwarfs that will eventually cool to become white dwarfs (Kilkenny, Hill, and Penfold 1981). L870-2 is a pair of white dwarfs and, given enough time, its 1.55 d orbital period will decay to shorter periods (Saffer, Liebert, and Olszewski 1988). GP Com, AM CVn, V803 Cen, and PG1346+082 are interacting binary white dwarfs with orbital periods between 1051 s for AM CVn and 46.5 min for GP Com (Nather, Robinson, and Stover 1981; Solheim et al. 1984; Wood et al. 1987; O’Donoghue and Kilkenny 1988). These ultrashort period systems must be descendents of detached pairs of white dwarfs. We also expect short-period binary white dwarfs to exist for theoretical reasons. All calculations of the evolution of binary stars show that main-sequence binaries can evolve to binary white dwarfs (e.g., Iben and Tutukov 1984). Among Population I stars, 1/2 to 2/3 of all main-sequence stars are binaries and about 20% of these binaries should become double white dwarfs with short orbital periods (Abt 1983, Iben and Tutukov 1986). Thus, about 1/10 of all white dwarfs could be close binaries (Paczynski 1985). Nevertheless, no detached binary white dwarfs with extremely short periods have yet been found.