Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T23:45:04.173Z Has data issue: false hasContentIssue false

Laboratory Simulation of Cometary Processes: Results from First Kosi Experiments

Published online by Cambridge University Press:  12 April 2016

E. Grün
Affiliation:
Max-Planck-Institut für Kernphysik, Heidelberg, FRG;
A. Bar-Nun
Affiliation:
Dept. of Geophysics and Planetary Sciences, Tel Aviv University, Tel Aviv, Israel;
J. Benkhoff
Affiliation:
Institut für Planetologie, WWU, Münster, FRG;
A. Bischoff
Affiliation:
Institut für Planetologie, WWU, Münster, FRG;
H. Düren
Affiliation:
Institut für Planetologie, WWU, Münster, FRG;
H. Hellmann
Affiliation:
Institut für Raumsimulation, DLR, Köln-Porz, FRG;
P. Hesselbarth
Affiliation:
Max-Planck-Institut für Kernphysik, Heidelberg, FRG;
P. Hsiung
Affiliation:
Institut für Chemie I, KFA, Jülich, FRG;
H.U. Keller
Affiliation:
Max-Planck-Institut für Aeronomie, Katlenburg-Lindau, FRG;
J. Klinger
Affiliation:
Laboratoire de Glaciologie et Geophysique de I’nvironnement, Saint-Martin-d’Heres, France;
J. Knölke
Affiliation:
Institut für Planetologie, WWU, Münster, FRG;
H. Kochan
Affiliation:
Institut für Raumsimulation, DLR, Köln-Porz, FRG;
H. Kohl
Affiliation:
Max-Planck-Institut für Kernphysik, Heidelberg, FRG;
G. Kölzer
Affiliation:
Abteilung Nuklearchemie, Universität Küln, Küln, FRG,
D. Krankowsky
Affiliation:
Max-Planck-Institut für Kernphysik, Heidelberg, FRG;
P. Lämmerzahl
Affiliation:
Max-Planck-Institut für Kernphysik, Heidelberg, FRG;
K. Mauersberger
Affiliation:
Max-Planck-Institut für Kernphysik, Heidelberg, FRG;
G. Neukum
Affiliation:
Institut für Optoelektronik, DLR, Oberpfaffenhofen, FRG,
A. Oehler
Affiliation:
Institut für Optoelektronik, DLR, Oberpfaffenhofen, FRG,
L. Ratke
Affiliation:
Institut für Raumsimulation, DLR, Köln-Porz, FRG;
K. Roessler
Affiliation:
Institut für Chemie I, KFA, Jülich, FRG;
G. Schwehm
Affiliation:
Space Science Department of ESA, ESTEC, Noordwijk, The Netherlands.
T. Spohn
Affiliation:
Institut für Planetologie, WWU, Münster, FRG;
D. Stöffler
Affiliation:
Institut für Planetologie, WWU, Münster, FRG;
K. Thiel
Affiliation:
Abteilung Nuklearchemie, Universität Küln, Küln, FRG,

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In situ observations of comet Halley provided the first photographs of a cometary nucleus and yielded information about its environment, including the emitted gas and dust. The relation between these measurements and properties of and processes on the nucleus is established by theoretical modelling, while laboratory experiments may provide some of the physical parameters needed. In addition, laboratory tests can stimulate new ideas for processes that may be relevant to cometary physics. Processes to be studied in detail by large-scale laboratory experiments may include: (1) heat transport phenomena during sublimation of porous ice-dust mixtures, (2) material modification and chemical fractionation caused by the sublimation processes, (3) buildup and destruction of dust mantles, (4) detailed studies of gas release from mixtures of volatile ices, and (S) the investigation of ice and dust particle release mechanisms. The KOSI-team (Kometensimulation) carried out sublimation experiments with ice-mineral mixtures in a large Space Simulator. During initial experiments, cylindrical samples of 30-cm diameter and 15-cm thickness were irradiated with up to 2700–W/m2 light energy. The samples consisted of water-ice or water- and CO2-ice mineral mixtures. The experiments showed the importance of advection for heat transport into the interior. It was found that the sublimation of CO2 advances into the sample at a higher speed than that of water vapor release. Therefore, emission of volatile gases responded to insolation changes with a time lag of several hours. The ratio of the emitted gas species, as well as the dust-to-gas mass ratio, differs significantly from the values within the sample. A partly permeable refractory mantle of minerals and carbonaceous material developed with time. Dust and ice particle emission has been observed to occur from irradiated dirty ices as well as from dust mantles.

Type
Section II: Laboratory Studies and Simulations
Copyright
Copyright © Kluwer 1991

References

Bar-Nun, A., Herman, D., Laufer, D. and Rappaport, M.L., 1985: Trapping and release of gases by water ice and implications for icy bodies; Icarus, 63, 317332 CrossRefGoogle Scholar
Bischoff, A. and Stöffler, D., 1988: Comet nucleus simulation experiments: Mineralogical aspects of sample preparation and analysis; Lunar and Planet. Sci. XIX, Lunar and Planetary Institute, Houston, 9091 Google Scholar
Brin, G.D. and Mendis, D.A., 1979: Dust release and mantle development in comets; Astrophys. J., 229, 402408 CrossRefGoogle Scholar
Crifo, J.F., 1989: Inferences concerning water vapour viscosity and mean free path at low temperatures; Astron. Astrophys., in pressGoogle Scholar
Delsemme, A.H. and Wenger, A., 1970: Physico-chemical phenomena in comets – I. Experimental study of snows in a cometary environment; Planet. Space Sci., 18, 709715 CrossRefGoogle Scholar
Eberhardt, P., Krankowsky, D., Schulte, W., Dolder, U., Lämmerzahl, P., Berthelier, J.J., Woweries, J., Stubbemann, U., Hodges, R.R., Hoffman, J.H. and Illiano, J.M., 1987: The CO and N2 abundance in comet P/Halley; Astron. Astrophys., 187, 481484 Google Scholar
Fanale, F.P. and Salvali, J.R., 1984: An idealized short-period comet model: Surface insolation, H2O flux, dust flux, and mantle evolution; Icarus, 60, 476511 Google Scholar
Gombosi, T.I. and Körösmezey, A., 1989: Modeling of the cometary nucleus-coma interface region; Adv. Space Res., Vol. 9, No. 3, 4151 CrossRefGoogle Scholar
Gombosi, T.I., Nagy, A.F. and Cravens, T.E., 1986: Dust and neutral gas modeling of the inner atmosphere of comets; Rev. Geophys., 24, 667700 CrossRefGoogle Scholar
Good, W., 1982: Structural investigations of snow and ice on core III from the drilling on Vernagtferner, Austria; Z.f. Gletscherkunde u. Glazial – geologie 18, 5364 Google Scholar
Good, W., 1987: Thin sections, serial cuts and 3-D analysis of snow; Avalanche Formation, Movement and Effects, IAHS Publ. 182, 3548 Google Scholar
Grün, E., Kochan, H., Roessler, K. and Stöffler, D., 1987: Simulation of cometary nuclei; Proc. Symposium on Diversity and Similarity of Comets, eds. Rolfe, E.J. and Battrick, B., ESA-SP 278, 501508 Google Scholar
Grün, E., Benkhoff, J., Bischoff, A., Düren, H., Hellmann, H., Hesselbarth, P., Hsiung, P., Keller, H.U., Klinger, J., Knölker, J., Kochan, H., Neukum, G., Oehler, A., Roessler, K., Spohn, T., Stöffler, D. and Thiel, K., 1989a: Modification of comet materials by the sublimation process: Results from simulation experiments; Workshop on Analysis of Returned Comet Nucleus Samples, Milpitas (in press)Google Scholar
Grün, E., Benkhoff, J., Fechtig, H., Hesselbarth, P., Klinger, J., Kochan, H., Kohl, H., Krankowsky, D., Lämmerzahl, P., Seboldt, W., Spohn, T. and Thiel, K., 1989b: Mechanisms of dust emission from the surface of a cometary nucleus; Adv. Space Res., Vol. 9, No. 3, 133137 CrossRefGoogle Scholar
Hanner, M.S., 1981: On the detectability of icy grains in the comae of comets; Icarus 47, 342350 CrossRefGoogle Scholar
Hapke, B., 1981: Bidirectional reflectance spectroscopy, 1. Theory; J. Geophys. Res., 86, 30393054 CrossRefGoogle Scholar
Horanyi, M., Gombosi, T.I., Cravens, T.e:, Körösmezey, A., Kecskemety, K., Nagy, A.F., and Szegö, K., 1984: The friable sponge model of cometary nuclei; Astrophys. J., 278, 449455 CrossRefGoogle Scholar
Ibadinov, K.I., 1989: Laboratory investigation of the sublimation of comet nucleus models; Adv. Space Res., Vol. 9, No. 3, 97-112; cf. also this volumeCrossRefGoogle Scholar
Jessberger, E.K., Christoforidis, A. and Kissel, J., 1988: Aspects of the major element composition of Halley’s dust; Nature, 332, 691695 CrossRefGoogle Scholar
Kajmakov, E.A. and Sharkov, V.I., 1972: Laboratory simulation of icy cometary nuclei; The Motion, Evolution of Orbits, and Origin of Comets, eds. Chebotarev, G.A., Kazimirchak-Polanskaya, E.I. and Marsden, B.G., Reidel Publ. Comp., Dordrecht, 308314 CrossRefGoogle Scholar
Keller, H.U., Arpigny, C., Barbieri, C., Bonnet, R.M., Cazes, S., Coradini, M., Cosmovici, C.B.., Delamere, W.A., Huebner, W.F., Hughes, D.W., Jamar, C., Malaise, D., Reitsema, H.J., Schmidt, H.U., Schmidt, W.K.H., Seige, P., Whipple, F.L. and Wilhelm, K., 1986: First Halley Multicolour Camera imaging results from Giotto; Nature, 321, 320326.CrossRefGoogle Scholar
Kerridge, J.F. and Matthews, M.S. (editors), 1988: Meteorites and the Early Solar System, Univ. of Arizona Press, Tuscon Google Scholar
Kissel, J., Krueger, F.R., 1987: The organic component in dust from comet Halley as measured by the PUMA mass spectrometer on board Vega 1; Nature, 326, 755760 CrossRefGoogle Scholar
Klinger, J, 1981: Some consequences of a phase transformation of water ice on the heat balance of a comet; Icarus 47, 320324.CrossRefGoogle Scholar
Klinger, J., Benkhoff, J., Espinasse, S., Grün, E., Ip, W., Joo, F., Keller, H.U., Kochan, H., Kohl, H., Roessler, K., Seboldt, W., Spohn, T. and Thiel, K., 1989a: How far do results of recent simulation experiments fit current models of cometary nuclei?; Proc 19th Lunar Planet. Sci. Conf., Lunar and Planetary Institute, Houston, 493497 Google Scholar
Klinger, J., Eich, G., Bischoff, A., Joo, F., Kochan, H., Roessler, K., Stichler, , and Stöffler, D., 1989b: “KOSI” comet simulation experiment at DFVLR: Sample preparation and the evolution of the 180/160 and the D/H ratio in the icy component; Adv. Space Res., Vol. 9, No. 3, 123125 CrossRefGoogle Scholar
Kochan, H., Benkhoff, J., Bischoff, A., Fechtig, H., Feuerbacher, B., Grün, E., Joo, F., Klinger, J., Kohl, H., Krankowsky, D., Roessler, K., Seboldt, W., Thiel, K., Schwehm, G. and Weishaupt, U, 1989a: Laboratory simulation of a cometary nucleus: Experimental setup and first results; Proc. 19th Lunar Planet. Sci. Conf., Lunar and Planetary Institute, Houston, 487492 Google Scholar
Kochan, H., Feuerbacher, B., Joo, F., Klinger, J., Seboldt, W., Bischoff, A., Düren, H., Stóffler, D., Spohn, T., Fechtig, H., Grün, E., Kohl, H., Krankowsky, D., Roessler, K., Thiel, K., Schwehm, G. and Weishaupt, U., 1989b: Comet simulation experiments in the DFVLR Space Simulators; Adv. Space Res., Vol. 9, No. 3, 113122 CrossRefGoogle Scholar
Kochan, H., Ratke, L., Hellmann, H., Thiel, K. and Grün, E., 1989c: Particle emission from artificial cometary surfaces: Material science aspects; Proc. 20th Lunar and Planet. Sci. Conf., Lunar and Planetary Institute, Houston, submittedGoogle Scholar
Kohl, H., Grün, E. and Weishaupt, U., 1989: A new method for analyzing low velocity particle impacts; submitted to Planet. Space Sci.CrossRefGoogle Scholar
Krankowsky, D., Lämmerzahl, P., Herrwerth, I., Woweries, J., Eberhardt, P., Dolder, U., Herrman, U., Schulte, W., Berthelier, J.J., Illiano, J.M., Hodges, R.R., and Hoffman, J.H., 1986: In situ gas and ion measurements at comet Halley; Nature, 321, 326329 CrossRefGoogle Scholar
Krankowsky, D. and Eberhardt, P., 1989: Evidence for the composition of ices in the nucleus of comet Halley; Comet Halley 1986, Worldwide Investigations, Results and Interpretations, Ellis-Horwood Limited, Chichester, in pressGoogle Scholar
Kührt, E., 1984: Temperature profiles and thermal stress on cometary nuclei; Icarus, 60, 512521 CrossRefGoogle Scholar
Mackinnon, I.D.R. and Rietmeijer, F.J.M., 1987: Mineralogy of chondritic interplanetary dust particles; Review of Geophysics, 25, 15271553 CrossRefGoogle Scholar
McDonnell, J.A.M. Pankiewicz, G.S., Birchley, P.N.W., Green, S.F. and Perry, C.H., 1989: The comet nucleus: Ice and dust morphological balances in a production surface of comet P/Halley; Proc. 20th Lunar Planet. Sci. Conf., Lunar and Planetary Institute, Houston, in pressGoogle Scholar
McKay, C.P., Squires, S.W. and Reynolds, R.T., 1986: Methods for computing core temperatures; Icarus, 66, 625629 CrossRefGoogle ScholarPubMed
Prialnik, D., 1989: Thermal evolution of cometary nuclei; Adv. Space Res., Vol. 9, No 3, 2540 CrossRefGoogle Scholar
Prialnik, D. and Bar-Nun, A., 1988: The formation of a permanent dust mantle and its effect on cometary activity; Icarus, 74, 272283 CrossRefGoogle ScholarPubMed
Roessler, K., Hsiung, P., Heyl, M., Neukum, G., Oehler, A., Kochan, H., 1989: Handling and analysis of ices in cryostats and glove boxes in view of cometary samples; Workshop on Analysis of Returned Comet Nucleus Samples, Milpitas (in press)Google Scholar
Sagdeev, R.Z., Szabo, F., Avanesov, G.A., Cruvellier, P., Szabo, L., Szegö, K., Abergel, A., Balazs, A., Barinov, I.V., Bertaux, J.-L., Blamont, J., Détaille, M., Dermarelis, E., Du'nev, G.N., Endröczy, G., Gardos, M., Kanyo, M., Kostenko, V.I., Krasikov, V.A., Nguyen-Trong, T., Nyitrai, Z., Reny, I., Rusznyak, P., Shamis, V.A., Smith, B., Sukhanov, K.G., Szabo, F., Szalai, S., Tarnopolsky, V.I., Toth, I., Tsukanova, G., Valnicek, B.I., Varhalmi, L., Zaiko, Yu K., Zatsepin, S.I., Ziman, Ya L., Zsenei, M. and Zhukov, B.S., 1986: Television observations of comet Halley from Vega spacecraft; Nature, 321, 262266.CrossRefGoogle Scholar
Sandford, S.A. and Walker, R.M., 1985: Laboratory infrared transmission spectra of individual interplanetary dust particles from 2.5 to 25 microns; Astrophys. J., 291, 838851 CrossRefGoogle Scholar
Saunders, R.S., Fanale, F.P., Parker, T.J., Stephens, J.B. and Sutton, S., 1986: Properties of filamentary sublimation residues from dispersions of clay in ice; Icarus, 66, 94104 CrossRefGoogle Scholar
Shulman, E.M., 1972: The evolution of cometary nuclei; The Motion, Evolution of Orbits, and Origin of Comets, (eds. Chebotarev, G.A., Kazimirchak-Polanskaya, E.I. and Marsden, B.G.), Reidel Publ. Comp., Dordrecht, 271276 CrossRefGoogle Scholar
Simpson, J.A., Rabinowitz, D., Tuzzolino, A.J., Ksanformality, L.V., Sagdeev, R.Z., 1987: The dust coma of comet P/Halley: Measurements on the Vega-1 and Vega-2 spacecraft; Astron. Astrophys. 187, 742752 Google Scholar
Smoluchowski, R., 1981: Amorphous and porous ice in cometary nuclei, Astrophys. J. 244, L31L34.CrossRefGoogle Scholar
Spohn, T. and Benkhoff, J., 1989: Thermal history of models for KOSI sublimation experiments; submitted to IcarusCrossRefGoogle Scholar
Spohn, T., Benkhoff, J., Klinger, J., Grün, E. and Kochan, H., 1989: Thermal modeling of two KOSI comet nucleus simulation experiments; Proc. COSPAR workshop on Comet Nucleus Modeling and Cometary Materials, Adv. Space Res., Vol. 9, No. 3, 127131 Google Scholar
Stöffler, D., Düren, H. and Knölker, J., 1989: Concepts for the curation, primary examination, and petrographic analysis of comet nucleus samples returned to Earth; Workshop on Analysis of Returned Comet Nucleus Samples, Milpitas (in press)Google Scholar
Storrs, A.D., Fanale, F.P., Saunders, R.S. and Stephens, J.B., 1988: The formation of filamentary sublimate residues (FSR) from mineral grains, Icarus, 76, 493512 CrossRefGoogle Scholar
Thiel, K., Kochan, H., Roessler, K., Grün, E., Schwehm, G., Hellmann, H., Hsiung, P. and Kölzer, G., 1989: Mechanical and SEM analysis of artificial comet nucleus samples; Workshop on Analysis of Returned Comet Nucleus Samples, Milpitas (in press)Google Scholar
Weissman, P.R., Kieffer, H.H., 1981: Thermal modeling of cometary nuclei; Icarus 47, 302311 CrossRefGoogle Scholar
Whipple, F.L., 1950: A comet model. I. The acceleration of comet Encke; Astrophys. J. 111, 375394 CrossRefGoogle Scholar