No CrossRef data available.
Published online by Cambridge University Press: 12 April 2016
Energetic ions or atoms in space may undergo hot chemical reactions upon penetration into interplanetary or interstellar dust grains, ice layers, cometary matter, and surfaces of planetary moons. The mechanistic pathways can be different from those of classical ion molecule interactions, photolytical and radiolytical processes. The kinetic energy of the hot reactant facilitates endothermic reactions and those with high energy of activation, among them atom-molecule interactions. The conditions of hot cosmic chemistry are simulated in laboratory experiments in order to obtain insight into the nature of chemical products and the reaction mechanisms of their formation. This paper reviews the methods of ion implantation, nuclear recoil in situ, nuclear recoil implantation, secondary knock-on processes and computer simulation of collision cascades. Carbon and nitrogen impact in frozen H2O, NH3 and CH4 is shown to lead to the formation and radiolytic permutation of a series of organic molecules, among them e.g. formaldehyde, methanol, methylamine, cyanamide, formamidine and guanidine which may act as precursors for biomolecules.