Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T22:04:03.272Z Has data issue: false hasContentIssue false

The kinematics and zero point of the log P –〈MK relation for galactic field RR Lyrae variables via statistical parallax

Published online by Cambridge University Press:  12 April 2016

A.K. Dambis
Affiliation:
Sternberg Astronomical Institute, Universitetskii pr. 13, Moscow, 119992Russia
O.V. Vozyakova
Affiliation:
Sternberg Astronomical Institute, Universitetskii pr. 13, Moscow, 119992Russia

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The kinematical parameters of the local field RR Lyrae population and the zero point of the log P –〈MK relation for these variables are inferred by applying the statistical parallax (maximum-likelihood) technique to a sample of 379 RR Lyrae stars with known periods, radial-velocities, metallicities, K-band photometry, and absolute proper motions on the ICRS system. Hipparcos, Tycho-2, SPM, UCAC1 and NPM1 were used as the sources of proper motions. The K-band magnitudes were adopted from the 2MASS All-Sky Data Release. The parameters of the velocity distribution are found to be (U0 = −13 ± 9, V0 = −41 ± 7, W0 = −19±4) kms−1, (σU = 66±9, σV = 47±7, σW = 23±5) km s−1 and (U0 = −11±10, V0 = −224±8, W0 = −8±6) km s−1 (σU = 158±9, σV = 95±5, σW = 88±5) km s−1 for the thick-disk (the purest disk sample, 56 stars) and halo (the purest halo sample, 264 stars) objects, respectively. The zero point of the infrared PL relation of Jones et al. (1992 – based on the results obtained using the Baade-Wesselink method) is confirmed: we find 〈MK〉 = −2.33⋅log PF−0.89±0.09, which is only brighter than found using the Baade-Wesselink method (Jones et al. 1992). A conversion of the resulting log P –〈MK relation to V-band luminosities yields the metallicity-luminosity relation 〈MV〉 = +1.12 + 0.18 ⋅ [Fe/H] ± 0.10. Our results imply a solar Galactocentric distance of R0 = 7.8±0.4 kpc and an LMC distance modulus of DMLMC = 18.17 ±0.10 (cluster RR Lyraes) or DMLMC = 18.10±0.10 (field RR Lyraes), thereby favoring the so-called short distance scale.

Type
Part 3. Variable stars as tracers of different stellar populations – galactic and globular clusters, LMC/SMC and Local Group galaxies
Copyright
Copyright © Astronomical Society of the Pacific 2004

References

Beers, T.C., Chiba, M., Yoshii, Y., Platais, I., Hanson, R.B., Fuchs, B., Rossi, S. 2000 AJ, 119, 2866 CrossRefGoogle Scholar
Carney, B.W., Fulbright, J.P., Terndrup, D.M., Suntzeff, N.B., Walker, A.R. 1995 AJ, 110, 1674 CrossRefGoogle Scholar
Dambis, A.K. 2003, in Galactic Dynamics, ed. Boily, C., Patsis, P., Theis, C., Portegies Zwart, S., & Spurzem, R., (Paris: EDP Sciences), in pressGoogle Scholar
Dambis, A.K., Rastorguev, A.S. 2001 Pis’ma Astron. Zh., 27, 132 Google Scholar
European Space Agency 1997 The Hipparcos and Tycho Catalogues, Vols. 1-20Google Scholar
Fernley, J., Barnes, T.G., Skillen, I., et al. 1998 A&A, 330, 515 Google Scholar
Frolov, M.S., Samus, N.N. 1998 Pis’ma Astron. Zh., 24, 209 Google Scholar
Hanson, R.B. 1994 Lick Proper Motion Program: NPM1 Catalog Documentation for the Computer-Readable Version, National Space Science Data Center Document No. NSSDC/WDC-A-R&S93-41Google Scholar
Hawley, S.L., Jeffreys, W.H., Barnes, T.G. III, Wan, L. 1986 ApJ, 302, 626 CrossRefGoogle Scholar
Hog, E., Fabricius, C. Makarov, V.V. et al. 2000 A&A, 355, 27 Google Scholar
Jones, R.V., Carney, B.W., Storm, J., Latham, D. 1992 ApJ, 386, 646 CrossRefGoogle Scholar
Kholopov, P.N., Samus, N.N., Frolov, M.S., et al. 1985-1987 General Catalog of Variable Stars, ed. Kholopov, P.N. (Moscow: Nauka)Google Scholar
Klemola, A.R. 2003, private communication.Google Scholar
Layden, A.C., Hanson, R.B., Hawley, S.L. et al. 1996 AJ, 112, 2110 CrossRefGoogle Scholar
Layden, A.C. 1995 AJ, 110, 2288 CrossRefGoogle Scholar
Monet, D.G., Levine, S.E., Canzian, B., et al. 2003 AJ, 125, 984 CrossRefGoogle Scholar
Murray, C.A. 1983, Vectorial Astrometry, (Bristol: A. Hilger)Google Scholar
Platais, I., Girard, T.M., Kozhurina-Platais, V., et al. 1998 AJ, 116, 2556 CrossRefGoogle Scholar
Udalski, A. 2000 AcA, 50, 279 Google Scholar
Urban, S.E., Corbin, T.E., Wycoff, G.L., Hoeg, E., Fabricius, C., Makarov, V.V. 2001 The AC 2000.2 CatalogueGoogle Scholar
Vozyakova, O.V. 2003, in preparation.Google Scholar
Walker, A.R. 1992 AJ, 390, L81 CrossRefGoogle Scholar
Zacharias, N., Urban, S.E., Zacharias, M.I., Hall, D.M. et al. 2000 AJ, 120, 2131 CrossRefGoogle Scholar