Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T16:47:50.543Z Has data issue: false hasContentIssue false

Irradiance Effects of Small-Scale Magnetic Fields on the Sun

Published online by Cambridge University Press:  12 April 2016

Sami K. Solanki*
Affiliation:
Institute of Astronomy, ETH-Zentrum, CH-8092 Zurich, Switzerland

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Small-scale magnetic fields affect the solar luminosity mainly on long time scales. To understand their contribution to solar luminosity variations we must know and understand the contribution of a typical small-scale magnetic feature. In this review I briefly outline our theoretical understanding of the processes leading to the enhancement (or reduction) of the brightness of flux tubes. I also present a brief overview of our observational knowledge.

Type
Empirical Models of Solar Total and Spectral Irradiance Variability
Copyright
Copyright © Kluwer 1994

References

Akimov, L.A., Belkina, I.L. & Dyatel, N.P. 1982 Brightness of the photosphere and faculae at the limb based on eclipse observations. Sov. Astron. 26, 334340.Google Scholar
Akimov, L.A., Belkina, I.L., Dyatel, N.P. & Marchenko, G.P. 1987 Contrast of faculae near the solar limb. Sov. Astron. 31, 6468.Google Scholar
Auffret, H. & Muller, R. 1991 Center-to-limb variation of the network bright points. Astron. Astrophys. 246, 264279.Google Scholar
Avrett, E.H. 1981 Reference model atmosphere calculations: The Sunspot sunspot model. In The Physics of Sunspots (ed. Cram, L.E. & Thomas, J.H.), pp. 235255. National Solar Obs., Sunspot, NM, USA.Google Scholar
Ayres, T.R., Testerman, L. & Brault, J.W. 1986 Fourier transform spectrometer observations of solar carbon monoxide. II. Simultaneous cospatial measurements of the fundamental and first-overtone bands, and Ca II K, in quiet and active regions. Astrophys. J. 304, 542559.CrossRefGoogle Scholar
Bruls, J.H.M.J. & Solanki, S.K. 1993 The chromospheric temperature rise in solar magnetic flux tubes. Astron. Astrophys. 273, 293303.Google Scholar
Chapman, G.A. 1970 On the physical conditions in the photospheric network: An improved model of solar faculae. Solar Phys. 14, 315327.CrossRefGoogle Scholar
Chapman, G.A. 1979 New models of solar faculae. Astrophys. J. 232, 923928.CrossRefGoogle Scholar
Chapman, G.A. 1981 Active regions from the photosphere to the chromosphere. In Solar Active Regions (ed. Orrall, F.Q.). pp. 4382. Colorado University Press, Boulder, CO, USA.Google Scholar
Chapman, G.A. & Klabunde, D.P. 1982 Measurements of the limb darkening of faculae near the solar limb. Astrophys. J. 261, 387395.CrossRefGoogle Scholar
Chapman, G.A. & McGuire, T.E. 1977 The wavelength dependence of the facular excess brightness. Astrophys. J. 217, 657660.CrossRefGoogle Scholar
Deinzer, W., Hensler, G., Schüssler, M. & Weisshaar, E. 1984 Model calculations of magnetic flux tubes I. Equations and method. Astron. Astrophys. 139, 426434.Google Scholar
Deinzer, W., Hensler, G., Schüssler, M. & Weisshaar, E. 1984 Model calculations of magnetic flux tubes II. Stationary results for solar magnetic elements. Astron. Astrophys. 139, 435449.Google Scholar
Fabiani Bendicho, P., Kneer, F. & Trujillo Bueno, J. 1992 On the photospheric temperature in small-scale magnetic flux concentrations. Astron. Astrophys. 264, 229235.Google Scholar
Foukal, P. & Fowler, L. 1984 A Photometric study of heat flow at the solar photosphere. Astrophys. J. 281, 442454.CrossRefGoogle Scholar
Foukal, P. & Lean, J. 1988 Magnetic modulation of solar luminosity by photospheric activity. Astrophys. J. 328, 347357.CrossRefGoogle Scholar
Foukal, P., Duvall, T. JR. & Gillespie, B. 1981 Detection of a temperature deficit in magnetic faculae at the solar photosphere. Astrophys. J. 249, 394398.Google Scholar
Foukal, P., Harvey, K. & Hill, F. 1991 Do changes in the photospheric magnetic network cause the 11 year variation of total solar irradiance? Astrophys. J. 383, L89L92.Google Scholar
Frazier, E.N. 1971 Multi-channel magnetograph observations. III: faculae. Solar Phys. 21, 4253.CrossRefGoogle Scholar
Frazier, E.N. 1978 Line profile families of faculae and pores. Astron. Astrophys. 64, 351358.Google Scholar
Frazier, E.N. & Stenflo, J.O. 1978 Magnetic, velocity and brightness structures in solar faculae. Astron. Astrophys. 70, 789799.Google Scholar
Fröhlich, C. 1994 Irradiance observations of the Sun. In The Sun as a Variable Star: Solar and Stellar Irradiance Variations (ed. Pap, J.M., Fröhlich, C., Hudson, H.S. & Solanki, S.K.). Cambridge Univ. Press, in press.Google Scholar
Grossmann-Doerth, U., Knölker, M., Schüssler, M. & Weisshaar, E. 1989 Models of magnetic flux sheets. In Solar and Stellar Granulationx (ed. Rutten, R.J. & Severino, G.). pp. 481492. Kluwer,Dordrecht.Google Scholar
Grossmann-Doerth, U., Knölker, M., Schüssler, M. & Solanki, S.K. 1993 The deep layers of solar magnetic elements. Astron. Astrophys. in press.Google Scholar
Hasan, S.S. 1988 Energy transport in intense flux tubes on the Sun. I. Equilibrium atmosphere. Astrophys. J. 332, 499513.CrossRefGoogle Scholar
Herbold, G., Ulmschneider, P., Spruit, H.C. & Rosner, R. 1985 Propagation of nonlinear radiatively damped longitudinal waves along magnetic flux tubes in the solar atmosphere. Astron. Astrophys. 145, 157169.Google Scholar
Hirayama, T. 1978 A model of solar faculae and their lifetime. Publ. Astron. Soc. Japan 30, 337352.Google Scholar
Ingersoll, A.P. & Chapman, G.A. 1975 Temperature variation with latitude in the upper solar photosphere: relevance to solar oblateness measurements and facular models. Solar Phys. 42, 279288.Google Scholar
Kalkofen, W., Rosner, R., Ferrari, A. & Massaglia, S. 1986 The equilibrium structure of thin magnetic flux tubes. II. Astrophys. J. 304, 519525.Google Scholar
Keller, C.U. 1992 Resolution of magnetic flux tubes on the Sun. Nature 359, 307308.Google Scholar
Keller, C.U., Solanki, S.K., Steiner, O. & Stenflo, J.O. 1990 Structure of solar magnetic fiuxtubes from the inversion of stokes spectra at disk center. Astron. Astrophys. 233, 583597.Google Scholar
Knölker, M. & Schüssler, M. 1988 Model calculations of flux tubes. IV. Convective energy transport and the nature of intermediate size flux concentrations. Astron. Astrophys. 202, 275283.Google Scholar
Knölker, M., Schüssler, M. & Weisshaar, E. 1988 Model calculations of magnetic flux tubes III. Properties of solar magnetic elements. Astron. Astrophys. 194, 257267.Google Scholar
Koutchmy, S. 1977 Photospheric faculae: the contrasts at the center of the solar disk using filigree pictures. Astron. Astrophys. 61, 397404.Google Scholar
Lawrence, J.K. 1988 Multi-color photometric observations of facular contrasts. Solar Phys. 116, 1732.Google Scholar
Lawrence, J.K., Chapman, G.A. & Herzog, A.D. 1988 Photometric determination of facular contrasts near the solar disk center. Astrophys. J. 324, 11841193.Google Scholar
Libbrecht, K.G. & Kuhn, J.R. 1984 A new measurement of the facular contrast near the solar limb. Astrophys. J. 277, 889896.CrossRefGoogle Scholar
Libbrecht, K.G. & Kuhn, J.R. 1985 On the facular contrast near the solar limb. Astrophys. J. 299, 10471050.Google Scholar
Livshits, M.A. 1968 Soln. Akt. 3, 78. Google Scholar
Mehltretter, J.P. 1974 Observations of photospheric faculae at the center of the solar disk. Solar Phys. 38, 4357.Google Scholar
Moran, T., Foukal, P. & Rabin, D. 1992 A photometric study of faculae and sunspots between 1.2 and 1.6 μm. Solar Phys. 142, 3546.Google Scholar
Muller, R. 1975 A model of photospheric faculae deduced from white light high resolution pictures. Solar Phys. 45, 105114.Google Scholar
Muller, R. & Keil, S.L. 1983 The characteristic size and brightness of facular points in the quiet photosphere. Solar Phys. 87, 243250.CrossRefGoogle Scholar
Nordlund, Å & Stein, R.F. 1989 Simulating magnetoconvection. In Solar and Stellar Granulation (ed. Rutten, R.J. & Severino, G.), pp. 453470. Kluwer, Dordrecht.Google Scholar
Pizzo, V.J., Mcgregor, K.B. & Kunasz, P.B. 1993a A numerical simulation of two-dimensional radiative equilibrium in magnetostatic flux tubes. I. The model. Astrophys. J. 404, 788798.Google Scholar
Pizzo, V.J., Mcgregor, K.B. & Kunasz, P.B. 1993b A numerical simulation of two-dimensional radiative equilibrium in magnetostatic flux tubes. II. Computational results. Astrophys. J. 413, 764777.Google Scholar
Rabin, D. 1992 Spatially extended measurements of magnetic field strength in solar plages. Astrophys. J. 391, 832844.Google Scholar
Rogerson, J.B. 1961 On photospheric faculae. Astrophys. J. 134, 331336.Google Scholar
Rüedi, I., Solanki, S.K., Livingston, W. & Stenflo, J.O. 1992 Infrared lines as probes of solar magnetic features. III. Strong and weak magnetic fields in solar plages. Astron. Astrophys. 263, 323338.Google Scholar
Schmahl, G. 1967 Zum Zustand der photosphärischen Schichten von Sonnenfackeln. Z. Astrophys. 66, 81117.Google Scholar
Sheeley, N.R. Jr., & Engvold, O. 1970 Simultaneous measurements of magnetic fields and brightness fields using a 4-image spectroheliograph. Solar Phys. 12, 6983.Google Scholar
Simon, G.W. & Zirker, J.B. 1974 A search for the footprints of solar magnetic fields. Solar Phys. 35, 331342.Google Scholar
Solanki, S.K. 1986 Velocities in solar magnetic fluxtubes. Astron. Astrophys. 168, 311329.Google Scholar
Solanki, S.K. 1993 Small-scale solar magnetic fields: An overview. Space Sci. Rev. 61, 1188.Google Scholar
Solanki, S.K. & Brigljević, V. 1992 Continuum brightness of solar magnetic elements. Asíron. Astrophys. 262, L29L32.Google Scholar
Solanki, S.K. & Stenflo, J.O. 1984 Properties of solar magnetic fluxtubes as revealed by Fe I lines. Astron. Astrophys. 140, 185198.Google Scholar
Solanki, S.K. & Stenflo, J.O. 1985 Models of solar magnetic fluxtubes: Constraints imposed by Fe I and II lines. Astron. Astrophys. 148, 123132.Google Scholar
Solanki, S.K., Steiner, O. & Uitenbroek, H. 1991 Two-dimensional models of the solar chromosphere. I. The Ca II K line as a diagnostic: 1.5-D radiative transfer. Astron. Astrophys. 250, 220234.Google Scholar
Spruit, H.C. 1976 Pressure equilibrium and energy balance of small photospheric fluxtubes. Solar Phys. 50, 269295.Google Scholar
Spruit, H.C. 1977 Heat flow near obstacles in the solar convection zone. Solar Phys. 55, 334.Google Scholar
Steiner, O. 1990 Model calculations of solar magnetic fluxtubes and radiative transfer. Ph.D. thesis, No. 9292, ETH-Zürich.Google Scholar
Stenflo, J.O. 1973 Magnetic-field structure of the photospheric network. Solar Phys. 32, 4163.CrossRefGoogle Scholar
Stenflo, J.O. 1975 A model of the supergranulation network and of active-region plages. Solar Phys. 42, 79105.Google Scholar
Stenflo, J.O. 1989 Small scale magnetic structures on the Sun. Astron. Astrophys. Rev. 1, 348.Google Scholar
Title, A.M., Tarbell, T.D., Topka, K.P., Cauffman, D., Balke, C. & Scharmer, G. 1990 Magnetic flux tubes and their relation to continuum and photospheric features. In Phys. of Magn. Flux Ropes (ed. Russell, C.T., Priest, E.R. & Lee, L.C.), pp. 171179. Geophysical Monograph 58, American Geophys. Union, Washington, DC, USA.Google Scholar
Title, A.M., Topka, K.P., Tarbell, T.D., Schmidt, W., Balke, C. & Scharmer, G. 1992 On the differences between plage and quiet Sun in the solar photosphere. Astrophys. J. 393, 782794.Google Scholar
Topka, K.P., Tarbell, T.D. & Title, A.M. 1992 Properties of the smallest solar magnetic elements. I. Facular contrast near Sun center. Astrophys. J. 396, 351363.Google Scholar
Waldmeier, M. 1949 Die Sichtbarkeitsfunktion der Sonnenfackeln. Z. Astrophys. 26, 147157.Google Scholar
Walton, S.R. 1987 Flux tube models of solar plages. Astrophys. J. 312, 909929.Google Scholar
Wang, H. & Zirin, H. 1987 The contrast of faculae near the solar limb. Solar Phys. 110, 281293.Google Scholar
Willson, R.C. & Hudson, H.S. 1988 Solar luminosity variations in solar cycle 21. Nature 332, 810812.Google Scholar
Zayer, I., Solanki, S.K., Stenflo, J.O. & Keller, C.U. 1990 Dependence of the properties of solar magnetic flux tubes on filling factor. II. Results of an inversion approach. Astron. Astrophys. 239, 356366.Google Scholar