Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T16:38:19.957Z Has data issue: false hasContentIssue false

The Interaction of Rotation with Convection

Published online by Cambridge University Press:  12 April 2016

Bernard R. Durney*
Affiliation:
High Altitude Observatory, National Center for Atmospheric Research*, Boulder, Colo., U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The equations for a rotating convective spherical shell are solved in the Herring approximation as an initial value problem. The main results are

  • (1) The most unstable modes (those that maximize the heat flux) correspond to convective cells stretching from pole to pole.

  • (2) The calculations of the Reynolds stresses show transport of angular momentum towards the equator. That is, differential rotation sets in with equatorial acceleration.

  • (3) The convective heat transport is maximum at the equator. This would give rise to an equator-pole flux difference.

  • (4) If convection is non-axisymmetric (as in the most unstable modes) there are no time independent solutions. The time dependence is oscillatory and of the form ωt + mφ.

Type
Part I / The Effects of Rotation on Stellar Interiors and Evolution
Copyright
Copyright © Reidel 1970

References

Busse, F. H.: 1969, Max Planck Institute Report MPI-PAE/Astro 15.Google Scholar
Condon, E. U. and Shortley, G. H.: 1951, The Theory of Atomic Spectra, Cambridge University Press, p. 52.Google Scholar
Dicke, R. H. and Goldenberg, H. M.: 1967, Nature 214, 1294.CrossRefGoogle Scholar
Durney, B. R.: 1968a, J. Atmos. Sci. 25, 372.Google Scholar
Durney, B. R.: 1968b, J. Atmos. Sci. 25, 771.Google Scholar
Durney, B. R. and Roxburgh, I. W.: 1969, Nature 221, 646.Google Scholar
Durney, B. R. and Skumanich, A.: 1968, Astrophys. J. 152, 225.Google Scholar
Gilman, P. A.: 1967, Part I, II, III, J. Atmos. Sci. 24, 101.Google Scholar
Herring, J. R.: 1963, J. Atmos. Sci. 20, 325.Google Scholar
Herring, J. R.: 1964, J. Atmos. Sci. 21, 277.Google Scholar
Howard, R.: 1969, unpublished.Google Scholar
Roxburgh, I. W.: 1967a, Nature 213, 1077.Google Scholar
Roxburgh, I. W.: 1967b, Nature 216, 1286.Google Scholar
Roxburgh, I. W.: 1969, The Application of Modern Physics to the Earth and Planetary Interiors. Wiley London.Google Scholar
Simon, G. W. and Weiss, N. O.: 1969, Z. Astrophys. 69, 435.CrossRefGoogle Scholar
Starr, V. P. and Gilman, P. A.: 1965, Astrophys. J. 141, 1119.Google Scholar
Ward, F.: 1965, Astrophys. J. 141, 534.CrossRefGoogle Scholar
Ward, F.: 1966, Astrophys. J. 145, 416.Google Scholar