Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T18:16:37.049Z Has data issue: false hasContentIssue false

Infrared Emission from Barred Spiral Galaxies

Published online by Cambridge University Press:  12 April 2016

Tim G. Hawarden*
Affiliation:
Joint Astronomy Centre, 660 N. A‘ohoku Place, Hilo, Hawaii 96720, USA
J. H. Huang
Affiliation:
Astronomy Department, Nanking University, Nanking, China
Q. S. Gu
Affiliation:
Astronomy Department, Nanking University, Nanking, China
*
1and Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, UK

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Amongst relatively undisturbed spiral galaxies of type ≤ Sc barred morphology is unquestionably associated with powerful mid- and Far-IR emission. On the other hand, even amongst early type galaxies, those with LFIR/LB < 1/3 exhibit no association of high relative FIR luminosity with barred morphology, but some association of IR colors resembling those of star formation regions (SFRs). Amongst systems with LFIR/LB < 0.1 this ratio may be anti-correlated with barredness. It appears that enhanced IR emission from those galaxies whose star formation rate is currently elevated by the the bar translates them into the group with higher FIR-to-optical luminosity ratios. Depletion of extended nearnuclear gas and dust, once the bar has swept up the currently-available supplies, may reduce the fraction of the background stellar radiation field which can be converted to FIR radiation in the inner, most luminous parts of the galaxy. Thus, after the starburst has subsided, such galaxies may be less FIR-luminous than unbarred systems. Several uncertainties remain: it is still not clear whether barred morphology is a necessary condition for the generation of a starburst in an otherwise undisturbed galaxy, while evidence as to the effect of differing bar strengths is conflicting.

Type
Part II. Observations of Barred Galaxies: Star Formation, IR Emission, Abundances
Copyright
Copyright © Astronomical Society of the Pacific 1996

References

Athanassoula, E. 1992a, MNRAS, 259, 328 Google Scholar
Athanassoula, E. 1992b, MNRAS, 259, 345 Google Scholar
de Jong, T., Clegg, P.E., Soifer, B.T., Rowan-Robinson, M., Habing, H.J., Houck, J.R., Aumann, H.H. et al. 1984, ApJ, 278, L67 Google Scholar
de Vaucouleurs, G. & de Vaucouleurs, A. 1964. Reference Catalog of Bright Galaxies, Austin: University of Texas Press.Google Scholar
de Vaucouleurs, G., de Vaucouleurs, A., & Corwin, H.G. Jr., 1976. Second Reference Catalog of Bright Galaxies, Austin, Texas: The University of Texas Press.Google Scholar
Devereux, N.A., Becklin, E.E., & Scoville, N. 1987, ApJ, 312, 529 CrossRefGoogle Scholar
Devereux, N.A. 1987, ApJ, 323, 91 Google Scholar
Dressel, L.L. 1988, ApJ, 329, L69 Google Scholar
Hawarden, T.G., Fairclough, J.H., Joseph, R.D., Leggett, S.K., & Mountain, C.M. 1986a, in Light on Dark Matter, Israel, F.P., Dordrecht: Reidel 1986, 455 Google Scholar
Hawarden, T.G., Mountain, C.M., Leggett, S.K., & Puxley, P.J. 1986b, MNRAS, 221, 41pGoogle Scholar
Huang, J.H., Gu, Q.S., Su, H.J., Hawarden, T.G., Liao, X.H. & Wu, G.X. 1995, A&A, in pressGoogle Scholar
Hummel, E. 1981, A&A, 93, 93 Google Scholar
Isobe, T. & Feigelson, E.D. 1992, ApJS, 79, 197 Google Scholar
Lonsdale, C.J., Persson, S.E., & Matthews, K. 1984, ApJ, 287, 95 Google Scholar
Pompea, S.M. & Rieke, G.H. 1990, ApJ, 356, 416 Google Scholar
Puxley, P.J., Hawarden, T.G., & Mountain, C.M. 1988, MNRAS, 231, 465 Google Scholar
Roberts, W.W., Huntley, J.M., & van Albada, G.D. 1979, ApJ, 233, 67 Google Scholar
Rowan-Robinson, M. & Crawford, J. 1988, MNRAS, 238, 523 Google Scholar
Sandage, A. & Tammann, G.A. 1981, A Revised Shapley-Ames Catalog of Bright Galaxies, Carnegie Institute, Washington, DC Google Scholar
Sanders, D.B., Soifer, B.T., Elias, J.H., Madore, B.F., Matthews, K., Neuge-bauer, G., & Scoville, N.Z. 1988, ApJ, 325, 74 Google Scholar
Sérsic, J.L. & Pastoriza, M. 1965, PASP, 77, 287 Google Scholar
Sérsic, J.L. & Pastoriza, M. 1967, PASP, 79, 152 Google Scholar
Soifer, B.T., Boehmer, L., Neugebauer, G., & Sanders, D.B. 1989, AJ, 98, 766 Google Scholar
Schwarz, M.P. 1984, MNRAS, 209, 93 CrossRefGoogle Scholar
Telesco, C.M. & Gatley, I. 1981, ApJ, 247, L11 Google Scholar
Telesco, C.M. & Gatley, I. 1984, ApJ, 284, 557 Google Scholar
Telesco, C.M., Dressel, L.L., & Wolstencroft, R.D. 1993, ApJ, 414, 120 Google Scholar
Tubbs, A.D. 1982, ApJ, 255, 458 Google Scholar
Véron-Cetty, M.P. & Véron, P. 1993, ESO Scientific Report No.13 Google Scholar
Young, J.S. & Devereux, N.A. 1991, ApJ, 373, 414 Google Scholar