Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T19:16:24.939Z Has data issue: false hasContentIssue false

Improved Secular Stability Limits for Rotating White Dwarfs

Published online by Cambridge University Press:  12 April 2016

R. H. Durisen
Affiliation:
Department of Astronomy, Indiana University
J. N. Imamura
Affiliation:
Department of Astronomy, Indiana University

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the special case of the Maclaurin spheroids, it has been known for some time that the m = 2 barlike modes become secularly unstable for t ≡ T/IWI ≥ 0.1376 where T is the total rotational kinetic energy and W is the total gravitational energy of the spheroid. “Secular” here means that the instability depends on dissipative processes and grows on a long dissipative time scale. In particular, the Dedekind-like bar mode, which has zero eigenfrequency at t = 0.1376 as viewed in the nonrotating frame, is unstable due to gravitational radiation (Chandrasekhar 1970).

Type
Colloquium Session I
Copyright
Copyright © The University of Rochester 1979

References

Bardeen, J. M., Friedman, J. L., Schutz, B. F., and Sorkin, R. 1977, Ap. J. Letters, 217, L49.Google Scholar
Chandrasekhar, S. 1969, Ellipsoidal Figures of Equilibrium (New Haven: Yale).Google Scholar
Chandrasekhar, S. 1970, Ap. J., 161, 561.CrossRefGoogle Scholar
Clement, M. J. 1979, Ap. J., 230, 230.Google Scholar
Durisen, R. H. 1975, Ap. J., 199, 179.Google Scholar
Endal, A. S., and Sofia, S. 1978, Ap. J., 220, 279.Google Scholar
Friedman, J. L., and Schutz, B. F. 1975a, Ap. J. Letters, 199, L157.Google Scholar
Friedman, J. L., and Schutz, B. F. 1975b, Ap. J., 200, 204.Google Scholar
Friedman, J. L., and Schutz, B. F. 1978a, Ap. J., 221, 937.Google Scholar
Friedman, J. L., and Schutz, B. F. 1978b, Ap. J., 222, 281.Google Scholar
Hunter, C. 1977, Ap. J., 213, 497.Google Scholar
James, R. A. 1964, Ap. J., 140, 552.Google Scholar
Larson, R. B. 1979, “The FU Orionis Mechanism,” preprint.Google Scholar
Liepman, H. W., and Roshko, A. 1957, Elements of Gas Dynamics (New York: Wiley), p. 208f.Google Scholar
Lynden-Bell, D., and Ostriker, J. P. 1967, M. N. R. A. S., 136, 293.Google Scholar
Ostriker, J. P., and Bodenheimer, P. 1968, Ap. J., 151, 1089.Google Scholar
Ostriker, J. P., and Bodenheimer, P. 1973, Ap. J., 180, 171.Google Scholar
Ostriker, J.P., and Mark, J.W.-K. 1968, Ap.J., 151, 1075.Google Scholar
Ostriker, J.P., and Tassoul, J.-L. 1969, Ap.J., 155, 987.Google Scholar
Papaloizou, J., and Pringle, J.E. 1978, M.N.R.A.S., 184, 501.CrossRefGoogle Scholar
Shapiro, S.L., and Lightman, A.P. 1976, Ap.J., 207, 263.Google Scholar
Tassoul, J.-L., and Ostriker, J.P. 1968, Ap.J., 154, 613.Google Scholar
Tassoul, J.-L., and Ostriker, J.P. 1970, Astr. and Ap., 4, 423.Google Scholar