Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T10:27:57.676Z Has data issue: false hasContentIssue false

High Throughput Soft X-ray Spectroscopy With Reflection Gratings

Published online by Cambridge University Press:  12 April 2016

Steven M. Kahn*
Affiliation:
Department of Physics and Space Sciences Laboratory, University of California, Berkeley, CA 94720USA

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

As dispersing elements, grazing incidence reflection gratings offer the unique combination of high dispersion and wide spectral coverage at high efficiency. They can therefore be coupled with large area, low-resolution mirrors and high quantum efficiency detectors to yield moderate resolution spectroscopy of faint X-ray sources. Various design options are presented and compared, including both objective and convergent-beam configurations and both in-plane and off-plane grating mountings. A specific reflection grating payload design for ESA’s X-Ray Multi-Mirror Mission (XMM) is reviewed in more detail. Predicted performance curves derived from ray trace studies are presented along with preliminary X-ray reflectivity measurements of prototype grating samples.

Type
9. Future X-ray Observatories, Detectors and Instrumentation
Copyright
Copyright © Cambridge University Press 1990

References

REFERENCES.

Brinkman, A.C., Dijkstra, J.H., Geerlings, W.F.P.A.L., van Rooijen, F.A., Timmermann, C., and de Korte, P.A.J., 1980, Appl. Opt., 19, 1601.CrossRefGoogle Scholar
Cash, W., 1988, Proc. SPIE, 830, 204.Google Scholar
den Boggende, A.J.F., de Korte, P.A.J., Videler, P.H., Brinkman, A.C., Kahn, S.M., Craig, W.W., Hailey, C.J., and Neviere, M., Proc. SPIE, 982, 283.CrossRefGoogle Scholar
Gorenstein, P., 1978, in New Instrumentation for Space Astronomy, ed. Hucht, K. van den and Vaiana, G.S., Oxford, Pergamon Press, p. 232.Google Scholar
Hettrick, M.C., and Bowyer, S., 1983, Appl. Opt., 22, 3921.CrossRefGoogle Scholar
Holt, S.S., 1989, this volume.Google Scholar
Hutley, M.C., 1982, Diffraction Gratings, Academic Press, London.Google Scholar
Madden, R.P., and Strong, J., 1958, Diffraction Gratings, Appendix P, in Concepts in Classical Optics, Freeman and Co., San Francisco.Google Scholar
Michette, A.G., 1986, Optical Systems for Soft X-Rays, Chapter 7, Plenum Press, New York.CrossRefGoogle Scholar
Peacock, A., and Ellwood, J., 1988, Proc. SPIE, 982, 277.Google Scholar
Petit, R., 1980, Electromagnetic Theory of Gratings, in Topics in Current Physics, 22, Springer Verlag, Berlin.CrossRefGoogle Scholar
Predehl, P., Brauninger, H., Burkert, W., Aschenbach, B., Trumper, J., Kuhne, M., and Muller, P., 1988, Proc. SPIE, 982, 265.CrossRefGoogle Scholar
Schattenburg, M.L., Canizares, C.R., Dewey, D., Levine, A.M., Markert, T.H., and Smith, H.I., 1988, Proc. SPIE, 982, 210.CrossRefGoogle Scholar
Seward, F.D., Chlebowski, T., Delvaille, J.P., Henry, J.P., Kahn, S.M., Van Speybroeck, L., Dijkstra, J., Brinkman, A.C., Heise, J., Mewe, R., and Schrijver, J., 1982, Appl. Opt., 21, 2012.CrossRefGoogle Scholar