Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T10:54:48.188Z Has data issue: false hasContentIssue false

The Formation and Evolution of Compact Stars in Binaries

Published online by Cambridge University Press:  22 February 2018

Ronald E. Taam*
Affiliation:
Department of Physics and Astronomy, Northwestern University, Evanston, IL

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The stellar evolutionary processes responsible for the formation of compact objects in interacting binary systems and their evolution are described. The common envelope phase plays a crucial role in their formation and angular momentum losses associated with magnetic braking and/or mass loss are important for their evolution. An application of these processes provides the evolutionary link between classes of interacting binary systems.

Resumen

Resumen

Se describen los procesos evolutivos estelares responsables de la formación de objetos compactos en sistemas binarios en interacción y su evolución. La fase de envolvente común juega un papel crucial en su formación y las pérdidas del momento angular relacionadas con el frenado magnético y/o pérdida de masa son importantes para su evolución. La aplicación de estos procesos proporciona el eslabón evolutivo entre las clases de sistemas binarios inter-actuantes.

Type
The Contributed Papers
Copyright
Copyright © Instituto de astronomia/revista mexicana de astronomίa y astrofίsica 2004

References

Akmal, A., Pandharipande, V. R., & Ravenhall, D. G. 1998, Phys. Rev. C, 58, 180 CrossRefGoogle Scholar
Andronov, N., Pinsonneault, M., & Sills, A. 2003, ApJ, 582, 358 CrossRefGoogle Scholar
Belczyński, K., & Taam, R. E. 2004, ApJ, 603, in pressGoogle Scholar
Iben, I. Jr., & Livio, M. 1993, PASP, 105, 1373 Google Scholar
Ivanova, N., & Taam, R. E. 2003, ApJ, 599, 516 Google Scholar
Ivanova, N., & Taam, R. E. 2004, ApJ, 601, in pressCrossRefGoogle Scholar
Kato, M., & Hachisu, I. 1994, ApJ, 437, 832 CrossRefGoogle Scholar
Kato, M., & Hachisu, I. 1999, ApJ, 513, L41 CrossRefGoogle Scholar
Kawai, Y., Saio, H., & Nomoto, K. 1987, ApJ, 315, 229 Google Scholar
King, A. R., & Ritter, H. 1999, MNRAS, 309, 253 CrossRefGoogle Scholar
Kondo, Y., & Nomoto, K. 1991, ApJ, 367, L19 Google Scholar
Li, X. D., & van den Heuvel, E. P. J. 1997, A&A, 322, L9 Google Scholar
MacFadyen, A. I., Woosley, S. E., & Heger, A. 2001, ApJ, 550, 410 Google Scholar
Mestel, L., & Spruit, H. С. 1987, MNRAS, 226, 57 Google Scholar
Patterson, J. 1984, ApJS, 54, 443 Google Scholar
Pizzolato, N., Maggio, A., Micela, G., Sciortino, S., & Ventura, P. 2003, A&A, 397, 147 Google Scholar
Podsiadlowski, Ph., Han, Z., & Rappaport, S. 2003, MNRAS, 340, 1214 CrossRefGoogle Scholar
Podsiadlowski, Ph., Rappaport, S., & Pfahl, E. D. 2002, ApJ, 565, 1107 Google Scholar
Sandquist, E. L., Taam, R. E., & Burkert, A. 2000, ApJ, 533, 984 CrossRefGoogle Scholar
Skumanich, A. 1972, ApJ, 171, 565 Google Scholar
Spruit, H. С. & Taam, R. E. 2001, ApJ, 548, 900 Google Scholar
Taam, R. E., King, A. R., & Ritter, H. 2000, ApJ, 541, 329 CrossRefGoogle Scholar
Taam, R. E., & Sandquist, E. L. 2000, ARA&A, 38, 113 Google Scholar
Taam, R. E., Sandquist, E. L., & Dubus, G. 2003, ApJ, 592, 1124 CrossRefGoogle Scholar
Verbunt, F.. & Zwaan, С. 1981, A&A, 100, L7 Google Scholar
Willems, B.. & Kolb, U. 2002, MNRAS, 337, 1004 CrossRefGoogle Scholar