Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T23:27:45.414Z Has data issue: false hasContentIssue false

Filament Chirality: A Link Between Fine-Scale and Global Patterns

Published online by Cambridge University Press:  12 April 2016

Sara F. Martin*
Affiliation:
Helio Research, 5212 Maryland Ave., La Crescenta, CA 91214, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Solar features that exhibit chirality are: fibril patterns in filament channels, filaments, coronal arcades over filaments, superpenumbral fibrils exterior to sunspots, whole active regions observed with magnetographs, some large-scale X-ray structures, and interplanetary magnetic plasma clouds originating from coronal mass ejections. Their signatures of chirality are briefly reviewed; some details are mentioned to further show relationships which link all of the chirality patterns into a single framework. The helicity of solar magnetic fields is the evident physical phenomena which finks each of the seven features to each other and into a broader framework. The chirality system, viewed as a whole magnetic system, reveals: (1) a consistent rotational configuration of the dominant direction of the magnetic field with height of features within and over filament channels from the photosphere to the highest part of the solar corona, and (2) the prominence cavity as a unique space between magnetic fields of opposite helicity.

Type
Global Patterns
Copyright
Copyright © Astronomical Society of the Pacific 1998

References

Burlaga, L.F. 1991, in Physics of the Inner Heliosphere II, (eds.) Schwenn, R. and Marsch, E., Springer Verlag, New York, p. 1 Google Scholar
Foukal, P. 1971, Solar Phys., 19, 59 Google Scholar
Gosling, J.T. 1990, in Physics of Magnetic Flux Ropes, (eds.) Russell, C.T., Priest, E.R., and Lee, L.C., Geophys. Mono. Ser. 58, AGU, p. 343 Google Scholar
Gosling, J.T. and Birn, J. 1995, Geophys. Res. Lett., 22, 869 Google Scholar
Hagyard, M.J., Smith, J.R. Jr., Teuber, D. and West, E.A. 1984, Solar Phys., 91, 115 Google Scholar
Hagyard, M., Venkatakrishnan, P. and Smith, J.B. Jr., 1990, ApJS, 73, 159 Google Scholar
Hale, G.E. 1927, Nature 119, 708 Google Scholar
Hale, G.E. 1925, Mt. W. Comm. No. 95, Proc. Nat. Acad. Sci. II, p. 691 Google Scholar
Harvey, J.W. 1994, BAAS, 26, 1523 Google Scholar
Klein, L.W. and Burlaga, L.F. 1982 J. Geophys. Res., 87, 613 Google Scholar
Leroy, J.-L. 1978, A&A, 64, 247 Google Scholar
Leroy, J.-L. 1989, in Dynamics and Structure of Quiescent Solar Prominences, (ed.) Priest, E.R., Kluwer Acad. Publ., Dordrecht, Holland, p. 77 Google Scholar
Low, B.C. and Hundhausen, A. 1995, ApJ, 443, 818 Google Scholar
Martin, S.F. 1994, BAAS, 26, 1522 Google Scholar
Martin, S.F. and Echols, C.R. 1994, in Solar Surface Magnetism, (eds.) Rutten, R.J. and Schrijver, C.J., Kluwer Acad. Publ., Dordrecht, Holland, p. 339 Google Scholar
Martin, S.F., Bilimoria, R. and Tracadas, P.W. 1994, in Solar Surface Magnetism, (eds.) Rutten, R.J. and Schrijver, C.J., Kluwer Acad. Publ., Dordrecht, Holland, p. 303 Google Scholar
Martin, S.F. and McAllister, A.H. 1995a, BAAS, 27, 961 Google Scholar
Martin, S.F. and McAllister, A.H. 1995b, in Magnetodynamic Phenomena in the Solar Atmosphere, (eds.) Uchida, Y. et al., Kluwer Acad. Publ., Dordrecht, Holland, p. 497 Google Scholar
Martin, S.F. and McAllister, A.H. 1997, in Coronal Mass Ejections, (eds.) Crooker, N. et al., Geophys. Mono. Ser. 99, AGU, p. 127 Google Scholar
Martin, S.F. and McAllister, A.H. 1998, ApJ., submittedGoogle Scholar
Marubashi, K. 1986, Adv. Space Res., 6, 335 Google Scholar
Marubashi, K. 1997, in Coronal Mass Ejections, (eds.) Crooker, N., Joselyn, J.A. and Feynman, J., Geophys. Mono. Ser. 99, AGU, p. 147 Google Scholar
Pevtsov, A.A., and Canfield, R.C. 1997, ApJL, submittedGoogle Scholar
Pevtsov, A.A., Canfield, R.C., and Metcalf, T.R. 1994, ApJL, 425, L117 Google Scholar
Richardson, R.S. 1941, ApJ, 41, 24 Google Scholar
Rompolt, B. 1975, Acta Univ. Wratenslavensis No. 252, 55 Google Scholar
Rompolt, B. 1990, Hvar Obs. Bull. 14(1), 37 Google Scholar
Rust, D.M. 1994, Geophys. Res. Lett. 21, 241 Google Scholar
Rust, D.M. and Bar, V. 1973, Solar Phys., 33, 445 Google Scholar
Rust, D.M. and Kumar, A. 1994, Solar Phys., 155, 69 Google Scholar
Rust, D.M. and Kumar, A. 1996, ApJ, 464, L199 Google Scholar
Rust, D.M. and Martin, S.F. 1994, in Solar Active Region Evolution, (eds.) Balasubramaniam, K.S. and Simon, G.W., ASP Conf. Ser., Vol. 68, San Francisco, p. 337 Google Scholar
Seehafer, N. 1990, Solar Phys., 125, 219 Google Scholar
Zhang, H. 1990, The Solar Cycle, (ed.) Harvey, K.L., ASP Conf. Ser., Vol. 27, San Francisco, p. 124 Google Scholar
Zirker, J.B., Martin, S.F., Harvey, K., and Gaizauskas, V. 1997, Solar Phys., 175, 27 Google Scholar