Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-30T06:29:38.171Z Has data issue: false hasContentIssue false

Evidence for Particle Acceleration in a Magnetized White Dwarf from Radio and Gamma-Ray Observations

Published online by Cambridge University Press:  12 April 2016

O. C. De Jager*
Affiliation:
Department of Physics, PU for CHE, Potchefstroom 2520, South Africa

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The DQ Her-type magnetic cataclysmic variable AE Aqr contains the most rapidly spinning white dwarf ( P = 33 s) in a close binary and can be considered as the “millisecond pulsar” equivalent of white dwarfs. It shows flare-like UV emission on timescales of an hour during which strong QPO activity is seen, as well as flare-like radio synchrotron emission on similar timescales up to frequencies of at least 250 GHz. It is one of the most efficient converters of accretion power to MeV electrons of all X-ray binaries, LMXB, and cataclysmic variables. TeV emission was also reported by two independent groups with a periodic and burst-like behavior similar to that seen in optical. The detection of a period derivative near 10−13 s/s in optical implies that the white dwarf is spinning down at a rate of ~6 × 1033 ergs s−1 which is at least an order of magnitude larger than the quiescent accretion luminosity and a few times larger than the typical UV flare luminosities. This spindown energy is not seen as disk luminosity, and the conditions appear to be favorable for the release of relativistic particles in a pulsar-type mechanism to explain the radio synchrotron emission in magnetic reconnection events, and the acceleration of particles to TeV energies in double layers if conditions are favorable.

Subject headings: acceleration of particles — binaries: close — stars: flare — stars: individual (AE Aquarii) — white dwarfs

Type
Stars
Copyright
Copyright © The American Astronomical Society 1994

References

Abada-Simon, M., et al. 1993, ApJ, in pressGoogle Scholar
Aly, J.J., & Kuipers, J. 1990, A&A, 227, 473 Google Scholar
Bastian, T.S., Dulk, G.A., & Chanmugan, G. 1988, ApJ, 324, 431 (BDC)Google Scholar
Berriman, G., et al. 1981, MNRAS, 217, 327 Google Scholar
Bookbinder, J.A., & Lamb, D.Q. 1987, ApJ, 323, L131 Google Scholar
Bowden, C.C.G., et al. 1992, Ap. Phys. 1, 47 Google Scholar
Brink, C., et al. 1990, in Proc. 21 st Internat. Cosmic Ray Conf. (Adelaide), 2, 283 Google Scholar
Bruch, A. 1991, A&A, 251, 59 Google Scholar
Chanmugan, G., & Brecher, K. 1985, Nature, 313, 767 Google Scholar
Cheng, K.S., & Ruderman, M.A. 1991, ApJ, 373, 187 Google Scholar
Davies, R.E., & Pringle, J.E. 1981, MNRAS, 196, 209 Google Scholar
De Jager, O. C., & Meintjes, P.J. 1993, A&A, 268, L1 Google Scholar
De Jager, O. C., et al. 1993, MNRAS, submittedGoogle Scholar
Eracleous, M., et al. 1991, ApJ, 382, 290 Google Scholar
Ghosh, P., & Lamb, F.K. 1979, ApJ, 234, 296 Google Scholar
Ghosh, P., & Lamb, F.K. 1991, in Neutron Stars: Theory and Observation, ed. Ventura, J. & Pines, D. (NATO ASI Series C), 344, 363 Google Scholar
Hamilton, R.J., Lamb, F.K., & Miller, M.C. 1993, in Proc. 1992 Compton Gamma-Ray Observatory Symposium, ed. Gehreis, N. (New York: AIP), in pressGoogle Scholar
Harding, A.K. 1981, ApJ, 245, 267 Google Scholar
Harding, A.K., Ozernoi, L.M., & Usov, V.V. 1993, MNRAS, in pressGoogle Scholar
Johnston, K., et al. 1986, ApJ, 309, 707 Google Scholar
Katz, J., & Smith, I.A. 1988, ApJ, 326, 733 Google Scholar
Lamb, D.Q. 1988, in Polarized Radiation of Circumstellar Origin, ed. Coyne, G.V. et al. (Vatican Observatory, Vatican City State)Google Scholar
Lamb, F.K., Hamilton, R.J., & Miller, M.C. 1993, Proc. 1992 Compton Gamma-Ray Observatory Symposium, ed. Gehreis, N. (New York: AIP), in pressGoogle Scholar
Meintjes, P.J. 1993, Ph.D. thesis, Potchefstroom Univ. Google Scholar
Meintjes, P.J., et al. 1992, ApJ, 401, 325 CrossRefGoogle Scholar
Michel, F.C. 1982, Rev. Mod. Phys., 54, 1 Google Scholar
Michel, F.C. 1983, ApJ, 266, 188 Google Scholar
Michel, F.C., & Dessler, A.J. 1981, ApJ, 251, 654 Google Scholar
Mitra, A. 1991, ApJ, 370, 345 Google Scholar
Paczyński, B. 1990, ApJ, 365, L9 Google Scholar
Parker, E.N. 1979, Cosmical Magnetic Fields (Clarendon: Oxford)Google Scholar
Patterson, J. 1979, ApJ, 234, 978 Google Scholar
Patterson, J., et al., 1980, ApJ, 240, L133 Google Scholar
Priedhorsky, W. 1986, ApJ, 306, L97 Google Scholar
Shvartsman, V.F. 1970, Radiofizika, 13, 1852 Google Scholar
Spicer, D.S. 1982, Space Sci. Rev., 31, 351 Google Scholar
Syunyaev, R.A., & Shakura, N.I. 1977, Pis’ma Astron., 3, 216 Google Scholar
Szkody, P. 1977, ApJ, 217, 140 Google Scholar
Tanzi, E.G., et al. 1981, PASP, 93, 68 Google Scholar
Traves, A., & Bocci, F. 1987, MNRAS, 225, 39PGoogle Scholar
Van Paradijs, J., et al. 1989, A&A, 79, 205 Google Scholar
Wang, Y.M. 1986, Ap&SS, 121, 193 Google Scholar
Warner, B., & Wickramasinghe, D.T. 1991, MNRAS, 248, 370 CrossRefGoogle Scholar
Welsh, W.F., Horne, K., & Gomer, R. 1993, ApJ, 410, L39 Google Scholar
Welsh, W.F., Horne, K., & Oke, R. 1993, ApJ, 406, 229 Google Scholar