Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T21:12:34.305Z Has data issue: false hasContentIssue false

Electron Beam as Origin of White-Light Solar Flares

Published online by Cambridge University Press:  12 April 2016

J. Aboudarham
Affiliation:
DASOP, Observatoire de Paris-Meudon, 92195 Meudon Principal Cedex, France
J. C. Henoux
Affiliation:
DASOP, Observatoire de Paris-Meudon, 92195 Meudon Principal Cedex, France

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the effect of chromospheric bombardment by an electron beam during solar flares. Using a semi-empirical flare model, we investigate energy balance at temperature minimum level and in the upper photosphere. We show that non-thermal hydrogen ionization (i.e., due to the electrons of the beam) leads to an increase of chromospheric hydrogen continuum emission, H population, and absorption of photo-spheric and chromospheric continuum radiation. So, the upper photosphere is radiatively heated by chromospheric continuum radiation produced by the beam. The effect of hydrogen ionization is an enhanced white-light emission both at chromospheric and photospheric level, due to Paschen and H continua emission, respectively. We then obtain white-light contrasts compatible with observations, obviously showing the link between white-light flares and atmospheric bombardment by electron beams.

Type
Research Article
Copyright
Copyright © Kluwer 1989

References

Aboudarham, J.: 1986, Ph.D. Thesis, Univ. Paris VI.Google Scholar
Aboudarham, J. and Hénoux, J. C.: 1986a, Astron. Astrophys. 156, 73.Google Scholar
Aboudarham, J. and Hénoux, J. C.: 1986b, Astron. Astrophys. 168, 301.Google Scholar
Aboudarham, J. and Hénoux, J. C.: 1987, Astron. Astrophys. 174, 270.Google Scholar
Avrett, E. H.: 1980, in Bonnet, R. M. and Dupree, A. K. (eds.), Solar Phenomena in Stars and Stellar System, D. Reidei Pubi. Co., Dordrecht, Holland.Google Scholar
Avrett, E. H.: 1985, in Lites, B. W. (ed.), Chromospheric Diagnostic and Modeling, NSO, Sunspot, NM.Google Scholar
Brown, J. C.: 1972, Solar Phys. 26, 441.Google Scholar
Brown, J. G.: 1973, Solar Phys. 28, 151.Google Scholar
Chambe, G. and Hénoux, J. G.: 1979, Astron. Astrophys. 80, 123.Google Scholar
Emslie, A. G.: 1978, Astrophys. J. 224, 241.Google Scholar
Feautrier, P.: 1964, Compt. Rend. Acad. Sci. Paris 258, 3189.Google Scholar
Hudson, H. S.: 1972, Solar Phys. 24, 414.CrossRefGoogle Scholar
Kane, S. R., Love, J. J., Neidig, D. F., and Cliver, E. W.: 1985, Astrophys. J. 290, L45.CrossRefGoogle Scholar
Machado, M. E., Avrett, E. H., Vernazza, J. E., and Noyes, R. W.: 1980, Astrophys. J. 242, 336.Google Scholar
Mott, N. F. and Massey, H. S. W.: 1965, The Theory of Atomic Collisions, Clarendon Press, Oxford.Google Scholar
Neidig, D. F.: 1983, Solar Phys. 85, 285.Google Scholar
Neidig, D. F.: 1988, private communication.Google Scholar
Vernazza, J. E., Avrett, E. H., and Loeser, R.: 1981, Astrophys. J. Suppl. 45, 635.Google Scholar