Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-20T06:44:46.397Z Has data issue: false hasContentIssue false

The Effects of Magnetic Fields on Period Changes, Mass Transfer and Evolution of Algol Binaries

Published online by Cambridge University Press:  12 April 2016

C. T. Bolton*
Affiliation:
David Dunlap Observatory,University of Toronto,P. O. Box 360, Richmond Hill,Ontario L4C 4Y6,CANADA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Variations in the magnetic pressure and flux blocking by starspots during the magnetic cycle of the cool semidetached component of an Algol binary may cause cyclic changes in the quadrupole moment and moment of inertia of the star which can cause alternate period changes. Since several different processes and timescales are involved, the orbital period changes may not correlate strongly with the indicators of magnetic activity. The structural changes in the semidetached component can also modulate the mass transfer rate. Sub-Keplerian velocities, supersonic turbulence, and high temperature regions in circumstellar material around the accreting star may all be a consequence of magnetic fields embedded in the flow. Models for the evolution of Algols which include the effects of angular momentum loss (AML) through a magnetized wind may have underestimated the AML rate by basing it on results from main sequence stars. Evolved stars appear to have higher AML rates, and there may be additional AML in a wind from the accretion disk.

Type
Research Article
Copyright
Copyright © Kluwer 1989

References

Applegate, J.H., and Patterson, J. 1987, Ap. J. (Letters), 322, L99.Google Scholar
Baliunas, S.L., and Vaughan, A.H. 1985, Ann. Rev. Astr. Ap., 23, 379.Google Scholar
Belcher, J.W., and MacGregor, K.B. 1976, Ap. J., 210, 498.Google Scholar
Biermann, P., and Hall, D.S. 1973, Astr. Ap., 27, 239.Google Scholar
Cannizzo, J.K., and Pudritz, R.E. 1988, Ap. J., 327, 840.CrossRefGoogle Scholar
Dearborn, D.S.P., and Blake, J.B. 1982, Ap. J., 257, 896.Google Scholar
Dorren, J.D., and Guinan, E. F. 1984, in Cool Stars, Stellar Systems and the Sun, Baliunas, S.L., and Hartmann, L., (eds.), (New York:Springer), 259.Google Scholar
Dorren, J.D., Guinan, E. F., and Wacker, S.W. 1986, New Insights Astrophysics, ESA SP-263, 201.Google Scholar
Dulk, G.A. 1985, Ann. Rev. Astr. Ap., 23, 169.Google Scholar
Endal, A.S., and Twigg, L. W. 1982, Ap. J. , 260, 342.Google Scholar
Endal, A.S., Sofia, S., and Twigg, L.W. 1985, Ap. J. , 290, 748.Google Scholar
Gilliland, R.L. 1981, Ap. J., 248, 1144.Google Scholar
Giuricin, G., Mardirossian, F., and Mezzetti, M. 1983, Ap. J. Suppl., 52, 35.Google Scholar
Gray, D.F. 1982, Ap. J., 262, 682.Google Scholar
Gray, D.F. 1985, Ap. J., 298, 756.Google Scholar
Hadrava, P. 1984, Bull. Astr. Inst. Czech., 35, 335.Google Scholar
Hall, D.S. 1975, Acta Astr., 25, 1.Google Scholar
Hall, D.S. 1987, Pub. Astr. inst. Czech. Acad. Sci., 70, 77.Google Scholar
Hall, D.S. 1988, these proceedings.Google Scholar
Hall, D.S., and Kreiner, J.M. 1980, Acta Astr., 30, 387.Google Scholar
Kaitchuck, R.H. 1988, these proceedings.Google Scholar
Kondo, Y., McCluskey, G.E., and Stencel, R.E. 1980, in Close Binary Stars: Observations and Interpretation, Plavec, M.J., Popper, D.M., and Ulrich, R.K., (eds.), New York: Springer, 237.Google Scholar
Kraicheva, Z.T., Tutukov, A.V., and Yungel’son, L. R. 1986, Astrophys., 24, 167.Google Scholar
Lestrade, J.-F., Mutel, R.L., Preston, R.A., and Phillips, R.B. 1986, in Cool Stars, Stellar Systems and the Sun, Zeilik, M., and Gibson, D.M., eds., New York: Springer, 13S.Google Scholar
Little-Marenin, I. R., Simon, T., Ayres, T.R., Cohen, N.L., Feldman, P.A., Linsky, J.L., Little, S.J., and Lyons, R. 1986, Ap. J. , 303, 780.Google Scholar
Lubow, S.H., and Shu, F.H. 1975, Ap. J. 198, 383.Google Scholar
Matese, J.J., and Whitmire, D.P. 1983, Astr. Ap., 117, L7.Google Scholar
Mochnacki, S.W. 1981, Ap. J., 245, 650.Google Scholar
Mutel, R.L., Morris, D.H., Doiron, D.J., and Lestrade, J.-F. 1987, A. J., 93, 1220.Google Scholar
Olson, E.C. 1985, in Interacting Binaries, Eggleton, P.P., and Pringle, J.E., eds., [Dordrecht: Reidel], 127.Google Scholar
Olson, E.C. 1988, these proceedings.Google Scholar
Peters, G.J. 1988, these proceedings.Google Scholar
Peters, G.J., and Polidan, R.S. 1984, Ap. J. , 283, 745 Google Scholar
Plavec, M. J. 1983, Ap. J., 275, 251.Google Scholar
Plavec, M.J. 1988, these proceedings.Google Scholar
Richards, M.T., Bolton, C.T., and Mochnacki, S.W. 1988, these proceedings.Google Scholar
Rosner, R., Golub, L., and Vaiana, G.S. 1985, Ann Rev. Astr. Ap., 23,413.Google Scholar
Rucinski, S. 1988, private communication.Google Scholar
Spruit, H.C., and Ritter, H. 1983, Astr. Ap., 124, 267.Google Scholar
Stepinski, T.F., and Levy, E.H. 1988, Ap. J., 331, 416.Google Scholar
Tassoul, J.-L. 1987, Ap. J., 322, 856.Google Scholar
Tassoul, J.-L. 1988, Ap. J. (Letters), 324, L71.Google Scholar
Tutukov, A.V. 1984, Astrophys., 21, 671.Google Scholar
Van Buren, D., and Young, A. 1985, Ap. J. (Letters), 295, L39.Google Scholar
Yungeľson, L. R. 1988, these proceedings.Google Scholar
Zahn, J.-P. 1977, Astr. Ap., 57, 383.Google Scholar