No CrossRef data available.
Published online by Cambridge University Press: 12 April 2016
As the techniques of lunar and artificial satellite laser ranging mature, emphasis is being placed upon the use of these observations to monitor the Earth’s rotation. It is important to note, however, that at the present time neither technique alone can furnish all three components of this rotation to an accuracy which surpasses those results obtained from classical techniques. In the case of LAGEOS laser ranging, unmodeled secular orbital effects couple with axial Earth rotation in such a way that these effects are not separable in the analysis of those observations. In the case of lunar laser ranging, observations have been regularly available only from a single station for the past ten years or so with the result that a change in latitude along the McDonald Observatory meridian is not separable into the ordinary (x,y) components of polar motion. The main purpose of this paper is to present the first stages of an investigation to combine LAGEOS and lunar laser ranging observations. It is hoped that the proper implementation of such a process might eliminate the shortcomings inherent in each technique, while accentuating the advantages of each. This has the potential of producing all three components of the Earth’s rotation to an accuracy and precision which is compatible with the present observational uncertainties.