No CrossRef data available.
Article contents
Differential Rotation as an Axisymmetric Resonant Mode of Convection
Published online by Cambridge University Press: 12 April 2016
Extract
Recent results from helioseismology (see Goode, these Proceedings) have shown that the inferred contours of the solar angular velocity are more or less radial in the convection region, and the rotation becomes uniform below. These observations contradict the prevailing numerical models of Taylor columns which predict angular velocity contours parallel to the rotation axis of the Sun. Thus, an alternative explanation of solar differential rotation is called for.
Presently, it is not feasible to construct a thermally-relaxed, dynamically self-consistent numerical model of the solar convection zone (see Chan and Serizawa, these Proceedings). It is then appropriate to explore simplified models that may shed some light. A number of analytical models have been proposed for the solar differential rotation, and the reader is referred to the book by Rüdiger (1989) for a comprehensive review of this subject. Here, we report on some recent development on the convective resonance model proposed by Chan et al. (1987; hereafter referred as CSM).
- Type
- Part III Solar magnetism and large-scale flows
- Information
- Copyright
- Copyright © Springer-Verlag 1991