Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T16:18:59.288Z Has data issue: false hasContentIssue false

Cosmic Dust in the Atmosphere and in the Interplanetary Space at 1 AU Today and in the Early Solar System

Published online by Cambridge University Press:  12 April 2016

H. Fechtig*
Affiliation:
Max-Planck-Institut für KernphysikHeidelberg, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Reliable measurements of cosmic dust abundances have been obtained by ionization detectors during particle impact and by collectors controlled either by inflight shadowing or by penetration-hole identification. A description of the techniques used is given.

Crater-number densities observed on the lunar surface and on lunar samples represent an important source of information on cosmic dust fluxes. The related results from the Apollo 11 and 12 missions are reviewed. The overall knowledge gained from these measurements leads to the following flux model: The cumulative flux Φ vs mass m follows the extrapolation from larger meteoroid-size range (Watson’s Law) and can be described by

The Pioneer 8 dust experiment and lunar samples indicate a depletion of the flux at approximately 10-8g. However, cosmic dust particles exist in interplanetary space at least down to 0.3 μ. diameter. They are interpreted as nonmetallic particles in the solar system.

The atmosphere shows an enhancement in particles of about one order of magnitude compared to the flux in interplanetary space at 1 AU. No depletion or cutoff could be detected. These particles are interpreted as lunar debris or as disintegrated products from fireballs.

The numbers of large lunar craters (>140 m diameter) in Mare Tranquillitatis and in Oceanus Procellarum are compared with the meteoroid flux. These comparisons lead to a time-variable flux of Φ.e-Bt, with B = 2.6 and t = time in 109 yr. Thus, the meteoroidflux at the formation of the lunar maria was approximately 4 orders of magnitude higher than today.

Type
Research Article
Copyright
Copyright © NASA 1971

References

Anon, ., 1966. The meteoroid satellite project Pegasus, first summary report, NASA Tech. Note D-3505.Google Scholar
Anon, ., 1967. Scientific results of project Pegasus, interim report, NASA X-53629.Google Scholar
Albee, A. L., et al., 1970. Ages, irradiation history, and chemical composition of lunar rocks from the Sea of Tranquillity, Science, 167, 463466.Google Scholar
Alexander, W. M., Arthur, C. W., and Bohn, J. L., 1971. Lunar Explorer 35 and OGO III: dust particle measurements in selenocentric and cislunar space from 1967 to 1969, Space Research XI, 279285.Google Scholar
Alexander, W. M., Arthur, C. W., Bohn, J. L., Johnson, J. H., and Farmer, B. J., 1972. Lunar Explorer 35: 1970 dust particle data and shower related picogram ejecta orbits, Space Research XII, 349355.Google Scholar
Auer, S., Fechtig, H., Feuerstein, M., Gerlofp, U., Rauser, P., Weihrauch, J., and Lindblad, B. A., 1970. Rocket experiments using extremely sensitive detectors for cosmic dust particles, Space Research X, 287294.Google Scholar
Auer, S., and Sitte, K., 1968. Detection technique for micrometeoroids using impact ionization, Earth Planetary Sci. Letters, 4, 178183.Google Scholar
Baldwin, R. B., 1969. Absolute ages of the lunar maria and large craters, Icarus, 11, 320331.Google Scholar
Baldwin, R. B., 1970. Absolute ages of the lunar maria and large craters, II. The viscosity of the Moon’s outer layers, Icarus, 13, 215225.Google Scholar
Baldwin, R. B., 1971. On the history of lunar impact cratering: the absolute time scale and the origin of planetesimals, Icarus, 14, 3652.Google Scholar
Berg, O. E., and Gerloff, U., 1971. More than two years of micrometeorite data from two Pioneer satellites, Space Research XI, 225235.Google Scholar
Bloch, M. R., Fechtig, H., Gentner, W., Neukum, G., and Schneider, E., 1971. Meteorite impact craters, crater simulations and the meteoroid flux in the early solar system, Proc. Second Lunar Sci. Conf., Geochim. Cosmochim. Acta, Suppl., 2, 26392652.Google Scholar
Brownlee, D., Hodge, P., and Bucher, W., 1971. Extraterrestrial dust in the stratosphere, unpublished.Google Scholar
Colombo, G., Shapiro, I. I., and Lautman, D. A., 1966. The Earth’s dust belt: fact or fiction? 3. Lunar ejecta, J. Geophys. Res., 71, 57195731.Google Scholar
Dietzel, H., 1971. Univ. Heidelberg. Google Scholar
Dohnanyi, J. S., 1969. On the origin and distribution of Meteoroids, Bellcomm. Inc., TR 69-105-3-2.Google Scholar
Dubin, M., 1971. Introduction, presented at COSPAR Meeting, Seattle, 1971.Google Scholar
Elsässer, H., 1958. Interplanetare materie, Mitt. Astr. Inst. Tübingen, 35, 73.Google Scholar
Farlow, N. H., Ferry, G. V., and Blanchard, M. B., 1970. Examination of surfaces exposed to a noctilucent cloud, August 1, 1968, J. Geophys. Res., 75, 67366750.Google Scholar
Fechtig, H., and Feuerstein, M., 1970. Particle collection results from a rocket flight on August 1, 1968, J. Geophys. Res., 75, 67516757.Google Scholar
Fechtig, H., Feuerstein, M., and Rauser, P., 1971. Simultaneous collection and detection experiment for cosmic dust, Space Research XI, 335346.Google Scholar
Fechtig, H., Mehl, A., Neukum, G., and Schneider, E., 1972. Meteoroid fluxes as derived from lunar crater number densities, unpublished.Google Scholar
Friichtenicht, J. F., 1964. Micrometeoroid simulation using nuclear accelerator techniques, Nucl. Instr. Methods, 28, 7078.Google Scholar
Gault, D. E., 1970. Saturation and equilibrium conditions for impact cratering on the lunar surface: criteria and implications, Radio Sci., 5, 273291.Google Scholar
Gault, D. E., Shoemaker, E. M., and Moore, H. J., 1963. Spray ejected from the lunar surface by meteoroid impact, NASA Tech. Note D-1767, Washington.Google Scholar
Gerloff, U., and Berg, O., 1971. A model for predicting the results of in situ meteoroid experiments: Pioneer 8 and 9 results and phenomenological evidence, Space Research XI, 397413.Google Scholar
Grün, E., 1970. Massenspektrometrische Analysen von Ionen beim Aufschlag schneller Staubteilchen, thesis, Univ. Heidelberg.Google Scholar
Grün, E., and Rauser, P., 1969. Penetration studies of iron dust particles in thin foils, Space Research IX, 147154.Google Scholar
Hartmann, W. K., 1966. Martian cratering, Commun. Lunar Planet. Lab., Univ. Ariz., 4, part 4, No. 65, 121131.Google Scholar
Hartmann, W. K., 1970. Lunar cratering chronology, Icarus, 13, 299301.CrossRefGoogle Scholar
Hawkins, G. S., 1963. Impacts on the Earth and Moon, Nature, 197, 781.Google Scholar
Hemenway, C. L., and Hallgren, D. S., 1970. Time variation of the altitude distribution of the cosmic dust layer in the upper atmosphere, Space Research X, 272280.Google Scholar
Hemenway, C. L., Hallgren, D. S., and Kerridge, J. F., 1968. Results from the Gemini S-10 and S-12 micrometeorite experiments, Space Research VIII, 521535.Google Scholar
Hemenway, C. L., Hallgren, D. S., Landate, A. T., Patashnick, H., Renzema, T. S., and Geiffith, O. K., 1971. A new high altitude balloon-top cosmic dust collection technique, Space Research XI, 393395.Google Scholar
Hemenway, C. L., and Soberman, R. K., 1962. Studies of micrometeorites obtained from a recoverable sounding rocket, Astron. J., 67, 256266.Google Scholar
Hoffmann, H. J., 1971. Entwicklung eines Detektors zur Massen und Geschwindigkeitsanalyse von kosmischen Staubteilchen, thesis, Univ. Heidelberg.Google Scholar
Hörz, F., Hartung, J. B., and Gault, D. E., 1971. Micrometeorite craters and related features on lunar rock surfaces, Earth Planet. Sci. Letters, 10, 381386.Google Scholar
Ingham, M. F., 1961. Observations of the zodiacal light from a very high altitude station, Mon. Not. Roy. Astron. Soc, 122, 157176.Google Scholar
Jacchia, L. G., 1955. The physical theory of meteors, 8, fragmentation as cause of the faint meteor anomaly, Astrophys. J., 121, 521527.Google Scholar
Keays, R. R., Ganapathy, R., Laul, J. C., Anders, E., Herzog, G. F., and Jeffery, P. M., 1970. Trace elements and radioactivity in lunar rocks: implications for meteorite infall, solar wind flux, and formation conditions of Moon, Science, 167, 490493.Google Scholar
Kirsten, T., Steinbrunn, F., and Zahringer, J., 1971. Location and variation of trapped rare gases in Apollo 12 lumar samples, Proc. Second Lunar Sci. Conf., Geochim. Cosmochim. Acta, Suppl., 2, 26392652.Google Scholar
Kornblum, J. J., 1969. Concentration and collection of meteoric dust in the atmosphere, J. Geophys. Res., 74, 19081919.Google Scholar
Leinert, C, 1971. The zodiacal light lines in the particle flux diagram, Space Research XI, 249253.Google Scholar
Lindblad, B. A., Arinder, G., and Wiesel, T., 1970. Rocket observations of micrometeorites, Space Research X, 295304.Google Scholar
Mandeville, J.-C., and Vedder, J. F., 1971. Microcraters formed in glass by low density projectiles, Earth Planet. Sci. Lett., 11, 297306.Google Scholar
Naumann, R. J., 1966. The near-earth meteoroid environment, NASA Tech. Note D-3717, Washington.Google Scholar
Nazarova, T. N., and Rybakov, A. K., 1971. Meteor particle studies from space vehicles, Space Research XI, 357361.Google Scholar
Neukum, G., 1971. thesis, Univ. Heidelberg.Google Scholar
Neukum, G., and Dietzel, H., 1971. On the development of the crater population on the Moon with time under meteoroid and solar wind bombardment, Earth Planet. Sci. Lett., 12, 5966.Google Scholar
Rauser, P., and Fechtig, H., 1972. Combined dust collection and detection experiment during a noctilucent cloud display above Kiruna, Sweden, Space Research XII, 391402.Google Scholar
Shapiro, I. I., Lautman, D. A., and Colombo, G., 1966. The Earth’s dust belt: fact or fiction? 1. Forces perturbing dust particle motion, J. Geophys. Res., 71, 56955704.Google Scholar
Shoemaker, E. M., Batson, R. M., Bean, A. L., Conrad, C. JR., Dahlem, D. H., Goddard, E. N., Hart, M. H., Larson, K. B., Schober, G. G., Schleicher, D. L., Sutton, R. L., Swann, G. A., and Waters, A. C., 1970. Preliminary geologic investigation of the Apollo 12 landing site, Part A: geology of the Apollo 12 landing site, Apollo 12 Preliminary Science Report, NASA, SP-235.Google Scholar
Shoemaker, E. M., Hait, M. H., Swann, G. A., Schleicher, D. L., Dahlem, D. H., Schober, G. G., and Sutton, R. C., 1970. Lunar regolith at tranquillity base, Science, 167, 452455.Google Scholar
Skrivanek, R. A., Carnevale, R. F., and Sarkisian, R. D., 1970. Results of in-flight shadowing performed on the ESRO rocket flight of 7 June 1968, Space Research X, 281286.Google Scholar
Verniani, F., 1969. Structure and fragmentation of meteoroids, Space Sci. Rev., 10, 230261.Google Scholar
Watson, F. G., 1956. Between the planets, Harvard Univ. Press, Cambridge, Mass.Google Scholar
Weinberg, J., 1964. The zodiacal light at 5300 Å, Ann. d’Astrophys., 27, 718738.Google Scholar
Yaniv, A., and Shafir, U., 1967. Preliminary results of a micrometeoroid collection experiment in the Luster program, Space Research VII, 14031411.Google Scholar