Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-09T14:29:52.411Z Has data issue: false hasContentIssue false

Coseismic Excitation of the Earth’s Polar Motion

Published online by Cambridge University Press:  12 April 2016

B.F. Chao
Affiliation:
Space Geodesy Branch, NASA Goddard Space Flight Center Greenbelt, Maryland 20771, USA
R.S. Gross
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology Pasadena, California 91109, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Apart from the “shaking” near the epicenter that is the earthquake, a seismic event creates a permanent field of dislocation in the entire Earth. This redistribution of mass changes (slightly) the Earth’s inertia tensor; and the Earth’s rotation will change in accordance with the conservation of angular momentum. Similar to this seismic excitation of Earth rotation variations, the same mass redistribution causes (slight) changes in the Earth’s gravitational field expressible in terms of changes in the Stokes coefficients of its harmonic expansion. In this paper, we give a historical background of the subject and discuss the related physics. We then compute the geodynamic effects caused by earthquakes using Chao and Gross’ (1987) formulas based on Gilbert’s (1970) normal-mode summation scheme. The effects are computed using the centroid moment tensor (CMT) solutions for 15,814 major earthquakes from Jan., 1977, through Feb., 1999, as provided in the Harvard CMT catalog. The computational results update those of Chao and Gross (1987) and Chao et al. (1996), further strengthening their findings and conclusions: (i) the strong tendency for earthquakes to make the Earth rounder and more compact (however slightly) continues; (ii) so does the trend in the seismic “nudging” of the rotation pole toward the general direction of ~ 140°E, roughly opposite to that of the observed polar drift, but two orders of magnitude smaller in drift speed.

Type
Part 4. Long-term Polar Motion
Copyright
Copyright © Astronomical Society of the Pacific 2000

References

Ben-Menahem, A. and Israel, M., 1970, Effect of major seismic events on the rotation of the Earth, Geophys. J. Roy. Astron. Soc., 19, 367393.CrossRefGoogle Scholar
Cecchini, G., 1928, II problema della variazione delle latitudini, in Pub. Del Reale Observatorio Astronomico di Brera in Milano, 61, 7.Google Scholar
Chandler, S., 1892, On the variation in latitude, Astron. J., 12, 17.CrossRefGoogle Scholar
Chao, B.F., 1984, On excitation of Earth’s free wobble and reference frames, Geophys. J. Roy. Astron. Soc., 79, 555563.CrossRefGoogle Scholar
Chao, B.F., 1994, The Geoid and Earth Rotation, in Geophysical Interpretations of Geoid, ed. Vanicek, P. and Christou, N., CRC Press, Boca Raton.Google Scholar
Chao, B.F. and Gross, R.S., 1987, Changes in the Earth’s rotation and low-degree gravitational field induced by earthquakes, Geophys. J. Roy. Astron. Soc., 91, 569596.CrossRefGoogle Scholar
Chao, B.F., and Gross, R. S., 1995, Changes of the Earth’s rotational energy induced by earthquakes, Geophys. J. Int., 122, 776783.CrossRefGoogle Scholar
Chao, B.F., Gross, R. S., and Dong, D. N., 1995, Global gravitational energy changes induced by earthquakes, Geophys. J. Int., 122, 784789.CrossRefGoogle Scholar
Chao, B.F., Gross, R. S., and Han, Y. B., 1996, Seismic excitation of the polar motion, 1977-1993, Pure and Applied Geophysics, 146, 407419.CrossRefGoogle Scholar
Chao, B.F., and Liu, L., 2000, New evidence for tidal triggering of earthquakes, in preparation.Google Scholar
Clark, T.A., C., Ma, Ryan, J.W., Chao, B.F., Gipson, J.M., MacMillan, D.S., Vandenberg, N.R., Eubanks, T.M., and Niell, A. E., 1998, Earth rotation measurement yields valuable information about the dynamics of the Earth system, EOS, Trans. Amer. Geophys. Union, 79, 205209.CrossRefGoogle Scholar
Dahlen, F.A., 1971. The excitation of the Chandler wobble by earthquakes, Geophys. J. R. astr. Soc., 25, 157206.CrossRefGoogle Scholar
Dahlen, F.A., 1973. A correction to the excitation of the Chandler wobble by earthquakes, Geophys. J. R. astr. Soc., 32, 203217.CrossRefGoogle Scholar
Dick, S., 2000, Historical overview, this issue.CrossRefGoogle Scholar
Dragoni, M., Yuen, D. A., and Boschi, E., 1983, Global postseismic deformation in a stratified viscoelastic Earth: effects on Chandler wobble excitation, J. Geophys. Res., 88, 22402250.CrossRefGoogle Scholar
Dziewonski, A. M., and Woodhouse, J. H., 1983, An experiment in the systematic study of global seismicity: centriod moment tensor solutions for 201 moderate and large earthquakes of 1981, J. Geophys. Res., 88, 32473271.CrossRefGoogle Scholar
Furuya, M., and Chao, B. F., 1996, Estimation of period and Q of the Chandler wobble, Geophys. J. Int., 127, 693702.CrossRefGoogle Scholar
Gambis, D., 2000, Long-term polar motion, this issue.Google Scholar
Gilbert, F., 1970, Excitation of the normal modes of the Earth by earthquake sources, Geophys. J. R. Astron. Soc., 22, 223226.CrossRefGoogle Scholar
Gilbert, F. and Dziewonski, A. M., 1975, An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra, Phil. Trans. R. Soc. Lond., A 278, 187269.Google Scholar
Gross, R.S., 1986, The influence of earthquakes on the Chandler wobble during 1977-1983, Geophys. J. R. Astron. Soc., 85, 161177.CrossRefGoogle Scholar
Gross, R.S., 1992, Correspondence between theory and observations of polar motion, Geophys. J. Int., 109, 162170.CrossRefGoogle Scholar
Israel, M., Ben-Menahem, A., and Singh, S. J., 1973, Residual deformation of real Earth models with application to the Chandler wobble, Geophys. J. Roy. Astron. Soc., 32, 219247.CrossRefGoogle Scholar
Israel, M., and Ben-Menahem, A., 1975, Changes in the Earth’s inertia tensor due to earthquakes by MacCullagh’s formula, Geophys. J. Roy. Astron. Soc., 40, 305307.CrossRefGoogle Scholar
Kanamori, H., 1976, Are earthquakes a major cause of the Chandler wobble? Nature, 262, 254255.CrossRefGoogle Scholar
Lambert, W.D., 1925, The variation of latitude, tides and earthquakes, Proc. 3rd Pan-Pacific Sc. Cong., Tokyo, 15171522.Google Scholar
Mansinha, L., and Smylie, D. E., 1967, Effects of earthquakes on the Chandler wobble and the secular pole shift, J. Geophys. Res., 72, 47314743.CrossRefGoogle Scholar
Mansinha, L., Smylie, D. E., and Beck, A. E., (eds.), 1970, Earthquake Displacement Fields and the Rotation of the Earth, D. Reidel, Dordrecht.CrossRefGoogle Scholar
Mansinha, L., Smylie, D. E., and Chapman, C. H., 1979, Seismic excitation of the Chandler wobble revisited, Geophys. J. Roy. Astron. Soc., 59, 117.CrossRefGoogle Scholar
Milne, John, , 1907, Bakerian Lecture — Recent advances in seismology, Proc R. Soc. Lond., 77A, 365376.Google Scholar
Munk, W.H., and MacDonald, G.J.F., 1960, The Rotation of the Earth, Cambridge Univ. Press, New York.Google Scholar
O’Connell, R.J. & Dziewonski, A.M., 1976. Excitation of the Chandler wobble by large earthquakes, Nature, 262, 259262.CrossRefGoogle Scholar
Pines, D., and Shaham, J., 1973, Seismic activity, polar tides and the Chandler wobble, Nature, 245, 7781.CrossRefGoogle Scholar
Poma, A., 2000, The Markowitz wobble, this issue.CrossRefGoogle Scholar
Press, F., 1965, Displacements, strains, and tilts at teleseismic distances, J. Geophys. Res., 70, 23952412.CrossRefGoogle Scholar
Press, F. and Briggs, P., 1975, Earthquakes, Chandler wobble, rotation and geomagnetic changes: A pattern recognition approach, Nature, 256, 270173.CrossRefGoogle Scholar
Rice, J.R. and Chinnery, M.A., 1972, On the calculation of changes in the Earth’s inertia tensor due to faulting, Geophys. J. R. Astron. Soc., 29, 7990.CrossRefGoogle Scholar
Rothacher, M., Springer, T., Beutler, G., and Weber, R., 1997, Routine subdaily ERP determination at the CODE Anlysis Center of the IGS, EOS, Trans. AGU, 78, S110.Google Scholar
Runcorn, S.K., 1970, A possible cause of the correlation between earthquakes and polar motions, Earthquake Displacement Fields and the Rotation of the Earth, ed. Mansinha, L., Smylie, D.E., and Beck, A. E., D. Reidel, Dordrecht.Google Scholar
Sabadini, R., Yuen, D. A., and Boschi, E., 1984, The effects of post-seismic motions on the moment of inertia of a stratified viscoelastic Earth with an asthenosphere, Geophys. J. R. Astron. Soc., 79, 725745.CrossRefGoogle Scholar
Salstein, D.A., 2000, Atmospheric excitation of polar motion, this issue.CrossRefGoogle Scholar
Smith, M.L., 1977, Wobble and nutation of the Earth, Geophys. J. Roy. Astron. Soc., 50, 103140.CrossRefGoogle Scholar
Smylie, D.E. and Mansinha, L., 1968, Earthquakes and the observed motion of the rotation pole, J. Geophys. Res., 73, 76617673.CrossRefGoogle Scholar
Smylie, D.E. and Mansinha, L., 1971, The elasticity theory of dislocations in real Earth models and changes in the rotation of the Earth, Geophys. J. Roy. Astron. Soc., 23, 329354.CrossRefGoogle Scholar
Soldati, G. and Spada, G., 1999, Large earthquakes and Earth rotation: the role of mantle relaxation, Geophys. Res. Lett., 26, 911914.CrossRefGoogle Scholar
Souriau, A. and Cazenave, A., 1985, Reevaluation of the Chandler wobble seismic excitation from recent data, Earth Planet. Sc Lett., 75, 410416.CrossRefGoogle Scholar
Spada, G., 1997, Why are earthquakes nudging the pole towards 140°E? Geophys. Res. Lett., 24, 539542.CrossRefGoogle Scholar