Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T14:42:11.313Z Has data issue: false hasContentIssue false

Contributions of Supernovae to the Chemical and Dynamical Evolution of the ISM

Published online by Cambridge University Press:  12 April 2016

Virginia Trimble*
Affiliation:
Department of Physics, University of California, Irvine CA 92717USA and Astronomy Program, University of Maryland, College Park MD 20742USA

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Supernovae of Types Ia, Ib, and II contribute, on average, 1051 ergs of turbulent energy to the interstellar medium for each 2 Mo of new heavy elements. This permits a dynamical extension of the homogeneous one-zone model (with constant IMF and instantaneous recycling) that is familiar from studies of galactic chemical evolution. Chemically possible scenarios predict current kinetic energy inputs ranging from 1039 to 1040 erg yr−1 per solar mass of interstellar gas. Dynamical studies might narrow this.

Type
VII. The Structure of the Interstellar Medium
Copyright
Copyright © Springer-Verlag 1989

References

Ashworth, W. 1980. J. Hist. Astron. 11, 1 CrossRefGoogle Scholar
Begelman, M.C. & Sarazin, C.L. 1986. Astrophys. J. 302, L59 Google Scholar
van den Bergh, S., McClure, R.D., & Evans, R. 1987. Astrophys. J. 323, 44 Google Scholar
Boesgaard, A.M. 1989. Astrophys. J. 336, 798 Google Scholar
Branch, D. & Nomoto, K. 1986. Astron. Astrophys. 164, 113 Google Scholar
Cappelaro, E. & Turatti, M. 1988. Astron. Astrophys. 190, 1 Google Scholar
Carney, B.A. 1988. Private communicationGoogle Scholar
Davidson, K. et al. 1982. Astrophys. J. 253, 696 Google Scholar
Filippenko, A.V. & Sargent, W.L.W. 1986. Astron. J. 91, 691 Google Scholar
Hashimoto, M., Nomoto, K. & Shigeyama, T. 1989. Astron. Astrophys. 210, L5 Google Scholar
Iben, I, Nomoto, K., Tornambe, A., & Tutukov, A. 1987. Astrophys. J. 317, 717 CrossRefGoogle Scholar
Matteucci, F. & Tornambè, A. 1988. Comm. Astrophys. 12, 245 Google Scholar
Norris, J. & Green, E.M. 1989. Astrophys. J. 332, 272 Google Scholar
Pagel, B.E.J. 1987. in Gilmore, G. & Carswell, R.F. (eds.) The Galaxy (Dordrecht: Reidel; ASI Inst.) p. 341 Google Scholar
Peimbert, M. et al. 1988. Publ. Astron. Soc. Japan 40, 581 Google Scholar
Schramm, D.N. 1989. Talk at UCLA Workshop, The Next Supernova Google Scholar
Searle, L. 1973. in Cayrel de Strobel, G. & Deplace, A.M. (eds.) Stellar Ages (Meudon, Obs. de Paris) LII, 1 Google Scholar
Richter, O.-G. & Rosa, M. 1989. Astron. Astrophys. 206, 219 Google Scholar
Tammann, G.A. 1982. in Rees, M.R. & Stoneham, R.J. (eds.) Supernovae : A Survey of Current Research (Dordrect: Reidel, ASI Inst.) p. 371 Google Scholar
Tinsley, B.M. 1968. Astrophys. J. 151, 547 Google Scholar
Tornambè, A. & Matteucci, F. 1987. Astrophys. J. 318, L25 CrossRefGoogle Scholar
Trimble, V. 1989. in Hayes, D.S. & Genet, R.M. (eds.) Remote Access Automatic Telescopes Fairborn Press, in pressGoogle Scholar
Uomoto, A. 1986. Astrophys. J. 310, L35 Google Scholar
Woosley, S.E. & Weavery, T.A. 1986. Ann. Rev. Astron. Astrophys. 24, 205 CrossRefGoogle Scholar
Woosley, S.E., Pinto, P.A. & Weaver, T.A. 1989. Proc. Astron. Soc. Australia, in pressGoogle Scholar
Zwicky, F. 1938. Astrophys. J. 88, 529 Google Scholar