Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T12:56:24.875Z Has data issue: false hasContentIssue false

The CNO problem in Magnetic Cataclysmic Variables

Published online by Cambridge University Press:  12 April 2016

Jean-Marc Bonnet-Bidaud
Affiliation:
Service d’Astrophysique, DSM/DAPNIA/SAp, CEA Saclay, 91191 Gif-sur-Yvette, France
Martine Mouchet
Affiliation:
Observatoire de Paris, 92190 Meudon, France

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Some polars like BY Cam are characterized by unusual CNO line ratios compared to other polars and non-solar abundances have been suggested to explain this anomaly. We present here a first attempt to constrain the elemental abundances in these systems by applying a specific ionisation model combined with a geometrical description of the accretion column where these lines are thought to be formed. The line luminosities have been computed using the CLOUDY plasma code for different ionisation spectra and column extension. We show here selected results and compare to the values observed in “peculiar” magnetic CVs. The model applied to BY Cam confirms that ionization models with solar abundances fail to reproduce the observed line intensity ratios. Assuming the model to be valid, the induced best abundances imply an overabundance of N (x25), underabundance of C (:8) and nearly solar O (:2), in line with CNO reprocessing.

Type
Part 3. A. Accretion Plasma diagnostics - Observations
Copyright
Copyright © Astronomical Society of the Pacific 2004

References

Bonnet-Bidaud, J. M., & Mouchet, M. 1987, A&A, 188, 89 (BM87)Google Scholar
Clayton, D. 1983, Principles of Stellar Evolution, Chicago Univ Press Google Scholar
Ferland, G. J., Korista, K. T., Verner, D. A., Ferguson, J. W., Kingdon, J. B., & Verner, E. M. 1998, PASP, 110, 761 Google Scholar
Haswell, C. A., Hynes, R. I., King, A. R., & Schenker, K. 2002, MNRAS 332, 928 Google Scholar
Jimenez-Garate, M. A., Hailey, C. J., Herder, J. W. den, Zane, S., & Ramsay, G. 2002, ApJ 578, 391 Google Scholar
Langer, S. H., Chanmugam, G., & Shaviv, G. 1982, ApJ, 258, 289 CrossRefGoogle Scholar
Mauche, C. W., Lee, Y. P., & Kallman, T. R. 1997, ApJ, 477, 832 Google Scholar
Mouchet, M., Bonnet-Bidaud, J. M., Hameury, J. M., & Acker, A. 1990, ESA SP-310, 423 Google Scholar
Mouchet, M., Bonnet-Bidaud, J. M., Somov, N. N., & Somova, T. A. 1997, A&A, 324, 109 Google Scholar
Mouchet, M., Bonnet-Bidaud, J. M., Abada-Simon, M. (+ 11 co-authors) 2002, in “Classical Novae Explosions”, AIP Conf Proc. 637, 67 Google Scholar
Mouchet, M., Bonnet-Bidaud, J. M., Roueff, E. (+ 10 co-authors) 2003, A&A, 401, 1071 Google Scholar
Ramsay, G., Mason, K. O., Cropper, M., Watson, M. G., & Clayton, K. L. 1994, MNRAS, 270, 692 Google Scholar
Remillard, R. A., Bradt, H. V., McClintock, J. E., Patterson, J., Roberts, W., Schwartz, D. A., & Tapia, S. 1986, ApJ, 302, L1l Google Scholar
Schenker, K., King, A. R., Kolb, U., Wynn, G. A., & Zhang, Z. 2002, MNRAS, 337, 1105 CrossRefGoogle Scholar
Schmidt, G. D. & Stockman, H. S. 1991, ApJ, 371, 749 Google Scholar
Schmidt, G. D. & Stockman, H. S. 2001, ApJ, 548, 410 Google Scholar
Stockman, H. S. & Schmidt, G. D. 1996, ApJ, 468, 883 Google Scholar
Silber, A., Bradt, H. V., Ishida, M., Ohashi, T., & Remillard, R. A. 1992, ApJ, 389, 704 Google Scholar
Stehle, R. & Ritter, H. 1999, MNRAS, 309, 245 Google Scholar
Szkody, P. & Silber, A. 1996, AJ, 112, 239 Google Scholar