Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T22:28:29.426Z Has data issue: false hasContentIssue false

The Classical Nova Outburst*

Published online by Cambridge University Press:  12 April 2016

Sumner G. Starrfieldt*
Affiliation:
Theoretical Division, Los Alamos National Laboratory and Department of Physics, Arizona State University, Tempe, Arizona 85281

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this review I will present and discuss both the nova outburst and the theoretical calculations related to its cause and evolution. I use the commonly accepted model for a nova: a close binary system with one member a white dwarf and the other member a larger, cooler star that fills its Roche lobe. Because it fills its lobe, any tendency for it to grow in size because of evolutionary processes or for the lobe to shrink because of angular momentum losses will cause a flow of gas through the inner Lagrangian point into the lobe of the white dwarf. The size of the white dwarf is small compared to the size of its lobe and the high angular momentum of the transferred material causes it to spiral into an accretion disk surrounding the white dwarf. Some viscous process, as yet unknown, acts to transfer mass inward and angular momentum outward through the disk so that a fraction of the material lost by the secondary ultimately ends up on the white dwarf. Over a long period of time, the accreted layer will grow in thickness until the bottom reaches a temperature that is high enough to initiate thermonuclear burning of hydrogen by the proton-proton reaction chain. The further evolution of thermonuclear burning on the white dwarf now depends upon the mass and luminosity of the white dwarf, the rate of mass accretion, and the chemical composition of the reacting layer.

Type
5. Novae and Accretion Disks
Copyright
Copyright © Springer-Verlag 1986

Footnotes

On leave from Arizona State University.

*

Supported in part by National Science Foundation Grant AST83-14788 to Arizona State University, by the DOE, and by a sabbatical leave grant from the Association of Western Universities.

References

1. Payne-Gaposchkin, C., the Galactic Novae (Dover, New York, 1957).Google Scholar
2. McLaughlin, D.B., in Stellar Atmosphere: Stars and Stellar Systems VI, Ed. Greenstein, J.S. (University of Chicago Press, Chicago, 1960) p. 585.Google Scholar
3. Gallagher, J.S., and Starrfield, S.G., Ann. Rev. Astron. Astrophys. 16, 171 (1978).Google Scholar
4. Starrfield, S.G., Sparks, W.M., and Truran, J.W., in Structure and Evolution of Close Binary Systems, Ed. Eggleton., P., Mitton., S., and Whelan, J. (Reidel, Dordrecht, 1976) p. 155.CrossRefGoogle Scholar
5. Truran, J.W., in Essays in Nuclear Astrophysics, Ed. Barnes, C.A., Clayton, D.D., and Schramm, D. (Cambridge, Cambridge University Press, 1982).Google Scholar
6. Truran, J.W., Starrfield, S.G., Strittmatter, P.A., Wyatt, S.P., Sparks, W.M., Astrophys. J. 211, 539 (1977).Google Scholar
7. Paczynski, B., and Zytkow, A., Astrophys. J. 202, 604 (1978).CrossRefGoogle Scholar
8. Sion, E.M., Acierno, M.J., and Tomazyk, S., Astrophys. J. 13; 230, 832 (1979).Google Scholar
9. Fujimoto, M.Y., Astrophys. J. 257, 752 (1982).CrossRefGoogle Scholar
10. Prialnik, D., Livio, M., Shaviv, G., and Kovetz, A., Astrophys. J. 257, 312 (1982).CrossRefGoogle Scholar
11. Kutter, G.S., and Sparks, W.M., Astrophys. J. 239, 988 (1980).Google Scholar
12. Iben, I., Astrophys. J. 259, 244 (1982).CrossRefGoogle Scholar
13. MacDonald, J., Astrophys. J. 267, 732 (1983).CrossRefGoogle Scholar
14. Chandrasekhar, S., An Introduction to the Study of Stellar Structure (Dover, New York, 1957).Google Scholar
15. Fowler, W.A., High Energy Astrophysics, Ed. Gratton., L. (Academic, New York, 1966) 328.Google Scholar
16. Hillebrandt, W., and Thielemann, F.-K., Astrophys, J., 255, 617 (1982).Google Scholar
17. Wiescher, M., Görres, J., Thielemann, F.-K., and Ritter, H. preprint. (1985).Google Scholar
18. Ferland, G.J., Langer, S.H., MacDonald, J., Pepper, G.H., Shaviv, G., and Truran, J.W., Astrophys. J. Lett. 262, L53 (1982).Google Scholar
19. Williams, R.E., The Interaction of Variable Stars with Their Environment, Ed. Kippenhahn., R., Rahe., J., and Strohmeier, W. (Bamberg, Rameis-Sternwarte, 1977) 242.Google Scholar
20. Williams, R.E., Woolf, N.J., Hege, E. K., Moore, R.L., and Kopřiva, D.A., Astrophys. J. 224, 171 (1978).CrossRefGoogle Scholar
21. Williams, R.E. and Gallagher, J.S., Astrophys. J. 228, 482 (1979).Google Scholar
22. Gallagher, J.S., Hege, E.K., Kopriva, D.A., Williams, R.E., and Butcher, H.R., Astrophys. J. 237, 55 (1980).CrossRefGoogle Scholar
23. Tylenda, R., Acta Astron. 28, 333 (1978).Google Scholar
24. Ferland, G.J. and Shields, G.A., Astrophys. J., 226, 172 (1978).Google Scholar
25. Starrfield, S., Truran, J.W., and Sparks, W.M., Astrophys. J. 226, 186 (1978).Google Scholar
26. Cordova, F.A. and Mason, K. O., in Accretion Driven Stellar X-Ray Sources, Ed. Lewin, W.H.G. and Heuvel, E. P. J. v.d. (Cambridge Univ., Cambridge, 1984).Google Scholar
27. Barlow, , et al., M.N.R.A.S. 195, 61 (1981).CrossRefGoogle Scholar
28. Williams, R.E., Sparks, W.M., Gallagher, J.S., Ney, E.P., Starrfield, S.G., and Truran, J.W., Astrophys. J. 251, 221 (1981).CrossRefGoogle Scholar
29. Webbink, R., Nature, 262, 271 (1976).Google Scholar
30. Williams, R.E., Astrophys. J. 235, 939 (1980).CrossRefGoogle Scholar
31. Williams, R.E., and Ferguson, D.H., Astrophys. J. 257, 672 (1982).CrossRefGoogle Scholar
32. Ferland, G.J., Lambert, D.L., McCall, M.L., Shields, G.A., and Slovak, M.H., Astrophys. J. 260, 794 (1982).Google Scholar
33. Weaver, H., in Highlights of Astronomy, ed. Contopolous., G. (Riedel, Dordrecht) 3, 509 (1974).Google Scholar
34. Stickland, D.J., Penn, C.J., Seaton, M.J., Snijders, M.A.J., and Storey, P.J., M.N.R.A.S. 197, 197 (1981).Google Scholar
35. Starrfield, S., Sparks, W.M., and Truran, J.W., Astrophys. J. Supp. 28, 247 (1974).Google Scholar
36. Sparks, W.M., Starrfield, S.G., Wyckoff, S., Williams, R.E., Truran, J.W., and Ney, E.P., in Advances in Ultraviolet Astronomy, Ed. Kondo, Y., Mead, J.M., and Chapman., R.D. (NASA Publication 2238, 1982) 478.Google Scholar
37. Snijders, M.A.J., Seaton, M.J., and Blades, J.C., in Advances in Ultraviolet Astronomy, Ed. Kondo, Y., Mead, J.M., and Chapman., R.D. (NASA Publication 2238, 1982) 625.Google Scholar
38. Williams, R.E., Astrophys. J. Lett., 261, L77 (1982).Google Scholar
39. Sneden, C., and Lambert, D.L., M.N.R.A.S. 170, 533 (1975).Google Scholar
40. Starrfield, S.G., Truran, J.W., Sparks, W.M., and Kutter, G.S., Astrophys. J. 176, 169 (1972).Google Scholar
41. Starrfield, S.G., Sparks, W.M., and Truran, J.W., Astrophys. J. 192, 647 (1974).Google Scholar
42. Sparks, W.M., Starrfield, S.G., and Truran, J.W., Astrophys. J. 220, 1063 (1978).Google Scholar
43. Prialnik, D., Shara, M.M., and Shaviv, G., Astron, and Astrophys. 62, 339 (1978).Google Scholar
44. Prialnik, D., Shara, M.M., and Shaviv, G., Astron, and Astrophys. 72, 192 (1978).Google Scholar
45. Nariai, K., Nomoto, K., and Sugimoto, D., Pub. Astr. Soc. Japan 32, 472 (1980).Google Scholar
46. Starrfield, S.G. Kenyon, S.G., Sparks, W.M., and Truran, J.W., Astrophys. J. 258, 683 (1982).Google Scholar
47. Robinson, E.L., Astron. J. 80, 515 (1975).Google Scholar
48. Sparks, W.M., Astrophys. J. 156, 569 (1969).Google Scholar
49. Bath, G.T., M.N.R.A.S. 182, 35 (1978).Google Scholar
50. Ruggles, C.L.N., and Bath, G.T., Astron. Astrophys. 80, 97 (1979).Google Scholar
51. Cameron, A.G.W., Space Sci. Rev. 15, 121 (1973).Google Scholar
52. Gallagher, J.S. and Code, A.D., Astrophys. J. 189, 303 (1974).Google Scholar
53. Gallagher, J.S. and Starrfield, S.G., M.N.R.A.S. 176, 53 (1976).Google Scholar
54. Wu, C.-C. and Kester, D., Astron. Astrophys. 58, 331 (1977).Google Scholar
55. Geisel, S.L., Kleinman, D.E., and Low, F.J., Astrophys. J. Lett. 161, L101 (1970).Google Scholar
56. Ney, E.P. and Hatfield, B.F., Astrophys. J. Lett. 217, LUI (1978).Google Scholar
57. Gehrz, D., Grasdalen, G.L., Hackwell, J.A., Ney, E.P., Astrophys. J. 237, 855 (1980).Google Scholar
58. Bath, G.T., and Shaviv, G., M.N.R.A.S. 175, 305 (1976).Google Scholar
59. Gallagher, J.S. and Ney, E.P., Astrophys. J. Lett. 204, L35 (1976).Google Scholar
60. Nariai, K., Pub. Astron. Soc. Japan 26, 57 (1974).Google Scholar
61. Starrfield, S., in White Dwarfs and Variable Degenerate Stars, Ed. Van Horn, H.M. and Weidemann, V. (Univ. of Rochester, Rochester, 1979) 274.Google Scholar
62. Starrfield, S.G., Space Sci. Rev. 27, 635 (1980).Google Scholar
63. Ford, H., Astrophys. J. 219, 595 (1978).CrossRefGoogle Scholar
64. Castor, J.I., Abbott, D.C., and Klein, R.I., Astrophys. J. 195, 157 (1975).Google Scholar
65. MacDonald, J., M.N.R.A.S. 191, 933 (1980).Google Scholar
66. Weidemann, V., in White Dwarfs and Variable Degenerate Stars, Ed. Van Horn, H.M. and Veidemann, V. (Univ. of Rochester, Rochester, 1979) 206.Google Scholar
67. Starrfield, S.G., Truran, H.W., Sparks, W.M., and Arnould, M., Astrophys. J. 222, 600 (1978).Google Scholar
68. Starrfield, S.G., Sparks, W.M., and Truran, J.W., Astrophys. J. 291, 136 (1985).Google Scholar
69. Starrfield, S.G., Sparks, W.M., and Truran, J.W., in preparation (1985).Google Scholar
70. Williams, R.E., Ney, E.P., Sparks, W.M., Starrfield, S.G., Truran, J.W., and Wyckoff, S., M.N.R.A.S. 212, 753 (1985).Google Scholar
71. Snijders, M.A.J., Batt, T.J., Seaton, M.J., Blades, J.C., and Morton, D.C. (1984).Google Scholar
72. Bode, M. and Evans, N., in The Classical Nova, Ed. Bode., M. and Evans, N. (Wiley, New York) 1986.Google Scholar
73. MacDonald, J., Fujimoto, M.Y., and Truran, J.W., Astrophys. J. 294, 263 (1985).Google Scholar
74. Sion, E.M. and Starrfield, S.G., Astrophys. J., in press (1986).Google Scholar