Published online by Cambridge University Press: 12 April 2016
Recently a number of studies have been published on the nuclear abundance of nova ejecta, as summarized by Truran and Livio (1986). H is always underabundant (compared to solar) and He is overabundant except for the cases where the heavier elements are far overabundant. The abundances of C, N, and O range from nearly solar to highly overabundant. A few novae are very rich in Ne and Mg as well as O, which has led to the discovery that these novae occur on O/Ne/Mg white dwarfs (Williams, et al., 1985). We will assume that the abundances are an accurate and consistently determined set of data for our purposes. The nova ejecta is a combination of original white dwarf material, remnant material, remaining on the white dwarf from the previous outburst, and accreted material, all of which has undergone thermonuclear processing during the outburst. The question we address here is “Can we untangle the observational abundances to determine the contributions of each source?” A positive answer would allow us to tell whether the white dwarf’s mass is increasing or decreasing and thus have implications on the accreting white dwarf model for a SNI.