Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T04:51:46.181Z Has data issue: false hasContentIssue false

Capture/Escape Boundary in the Collinear Restricted Three-Body Problem

Published online by Cambridge University Press:  12 April 2016

Gerard Gómez
Affiliation:
Secció de Matemàtiques, Facultat de Ciéncies, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
Jaume Llibre
Affiliation:
Secció de Matemàtiques, Facultat de Ciéncies, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the cantorian structure of the successive intersections of the invariant manifolds of infinity (parabolic orbits) with a certain surface of section. The first of these intersections is computed numerically. The structure of the set of orbits of capture or escape after n binary collisions is given.

Type
Part V - Trapped Motion in the Three-Body Problem
Copyright
Copyright © Reidel 1983

References

Llibre, J. and Simó, C. (1980a), J. Differential Equations 37, p.444.CrossRefGoogle Scholar
Llibre, J. and Simó, C. (1980b), Math. Ann. 248, p.153.CrossRefGoogle Scholar
Llibre, J. and Simó, C. (1980c), Publicacions Mat. Universitat Autònoma de Barcelona 18, p.49.Google Scholar
McGehee, R. (1973), J. Differential Equations 14, p.70.CrossRefGoogle Scholar
Moser, J.K. (1973), “stable and random motions in dynamical systems”, Princeton Univ. Press, Princeton, N.J. Google Scholar
Serra, R. (1981), to appear in “Actas del IV Congreso de Ecuaciones Diferenciales y Aplicaciones”, Sevilla.Google Scholar
Siegel, CL. and Moser, J.K. (1971), “Lectures on Celestial Mechanics”, Springer-Verlag, Berlin/New York.CrossRefGoogle Scholar
Stiefel, E.L. and Scheifele, G. (1971), “Linear and regular Celestial Mechanics”, Springer-Verlag, Berlin/New York.CrossRefGoogle Scholar