Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-30T12:34:37.888Z Has data issue: false hasContentIssue false

Are Some Stellar Coronae Optically Thick?

Published online by Cambridge University Press:  12 April 2016

C.J. Schrijver
Affiliation:
Lockheed Palo Alto Research Laboratories, Palo Alto, CA 94304, USA
G.H.J. van den Oord
Affiliation:
Sterrekundig Instituut, Utrecht, The Netherlands
R. Mewe
Affiliation:
Space Research Organization of The Netherlands, Utrecht, The Netherlands
J.S. Kaastra
Affiliation:
Space Research Organization of The Netherlands, Utrecht, The Netherlands

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We discuss the coronal spectra of a sample of cool stars observed with the spectrometers of the Extreme Ultraviolet Explorer (EUVE). The emission measure distributions show (a) a relatively weak component between 0.1 MK and 1 MK, (b) a dominant component somewhere between 2 MK and 10 MK, and (c) in all cases but one a component in the formal solution at temperatures exceeding ≈ 20 MK. Where this hot tail is not associated with a real hot component, it is a spurious result reflecting a lowered line-to-continuum ratio, which, for instance, may be the result of a low abundance of heavy elements or of resonant scattering in some of the strongest coronal lines. We suggest that in Procyon’s corona photons in the strongest lines formed around a few million Kelvin undergo resonant scattering in a circumstellar medium, possibly a stellar wind. The flare spectrum of AU Mic suggests that resonant scattering may also occur in dense, hot flare plasmas. The electron densities of the 5–15 MK component are some three orders of magnitude higher than typical of the solar-like component around 2 MK; the volume filling factors of the hot components are therefore expected to be relatively small.

Type
III. Coronae of Cool Stars
Copyright
Copyright © Kluwer 1996

References

Acton, L. 1978, ApJ, 225, 1069 Google Scholar
Acton, L. & Catura, R. 1976, Phil. Trans. Roy. Soc. London, A, 281, 383 Google Scholar
Athay, R. 1972, Radiation Transport in Spectral Lines, Dordrecht: Reidel Google Scholar
Cheng, C. 1980, SPh, 65, 347 Google Scholar
Dehe, K. 1982, SPh, 77, 77 Google Scholar
Drake, J.J., Laming, J., & Widing, K. 1995, ApJ, in pressGoogle Scholar
Haisch, B. & Claflin, E. 1985, SPh, 99, 101 Google Scholar
Mariska, J.T. 1992, The Solar Transition Region, Cambridge University Press Google Scholar
Mewe, R., Kaastra, J., Schrijver, C., Van Den Oord, G., & Alkemade, F. 1995, AA, 296, 477 Google Scholar
Mlhalas, D. 1978, Stellar Atmospheres, San Francisco: Freeman Google Scholar
Rosner, R., Tucker, W., & Vaiana, G. 1978, ApJ, 220, 643 Google Scholar
Rugge, H. & Mckenzie, D. 1985, ApJ, 279, 338 Google Scholar
Schmelz, J., Saba, J., & Strong, K. 1992, ApJL, 398, 115 Google Scholar
Schrijver, C., Mewe, R., Van Den Oord, G., & Kaastra, J. 1995, AA, in pressGoogle Scholar
Schrijver, C., Van Den Oord, G., & Mewe, R. 1994, AA, 289, L23 Google Scholar
Schrijver, C.J. 1993, AA, 269, 446 Google Scholar
Thomas, R. 1957, ApJ, 125, 260 CrossRefGoogle Scholar
Thomas, R.J., Neupert, W.M. 1994, ApJS, 91, 461 CrossRefGoogle Scholar
Waljeski, K., Moses, D., Dere, K., Saba, J., Strong, K., Webb, D., & Zarro, D. 1994, ApJ, 429, 909 Google Scholar