Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-17T16:57:09.405Z Has data issue: false hasContentIssue false

An Intermediary Periodic Orbit for Hyperion

Published online by Cambridge University Press:  12 April 2016

I. Stellmacher*
Affiliation:
Bureau des longitudes, Université Lille I

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have seen (Stellmacher, 1996) that the long-period terms for Hyperion’s motion are very well represented by a second kind and second genius periodic orbit, after Poincaré’s classification.

We have shown how to construct such an orbit with, as only data, the observed periods, which characterise the resonance of the Titan-Hyperion couple, and the Titan’s motion which is an elliptical one. The physical quantities as the masses and the J2 term of Saturn’s flattening are given. We will present the results that we obtained, and compare them with those that other authors obtained by fitting the series to the observations.

Type
Extended Abstracts
Copyright
Copyright © Kluwer 1999

References

Blitzer, L.: 1977, Cel. Mech. & Dyn. Astro., 16, 8795.Google Scholar
Blitzer, L., Anderson, J.P.: 1981, Cel. Mech. & Dyn. Astro., 25, 6578.CrossRefGoogle Scholar
Brouwer, D. and Clemence, G.M.: 1961, Celestial Mechanics, Academic Press, New York.Google Scholar
Dourneau, G.: 1993, Astron. Astrophys., 267, 292299.Google Scholar
Duriez, L.: 1988, Astron. Astrophys., 194, 309318.Google Scholar
Ferraz Mello, S.: 1987, Astron. Astrophys., 183, 397402.Google Scholar
Ferraz Mello, S., Sato, M.,: 1989, Astron. Astrophys., 225, 541, 47.Google Scholar
Garcia, H.A.: 1972, A J., 77,. 684.Google Scholar
Haag, J.: 1948, J. Ann. Sci. de l’E.N.S., 64, 299.Google Scholar
Hagihara, Y.: 1971, Celestial Mechanics, 2 part 1., M.I.T. Press.Google Scholar
Message, P.J.: 1987-1988, Cel. Mech. & Dyn. Astro., 43, 119125.Google Scholar
Message, P.J.: 1988-1989, Cel. Mech. & Dyn. Astro., 45, 4553.Google Scholar
Message, P.J.: 1993, Cel. Mech. & Dyn. Astro., 56, 277284.Google Scholar
Poincaré, H.: 1987, Methodes nouvelles de la mécanique céleste, réimpression par Blanchard, A. de l’édition Gauthiers-Villars, Tome 1, p. 79, Tome 3, p. 201.Google Scholar
Roseau, M.: 1966, Vibrations non linéaires et théorie de la stabilité, Springer Tracts in Naturai philosophy, Vol. 8, Berlin, Heidelberg, New-York.Google Scholar
Stellmacher, I.: 1996, IV International Workshop on Positional Astronomy and Celestial Mechanics; Peniscola Spain, Oct.7.11. (to appear).Google Scholar
Taylor, D.B.: 1984, Astron. Astrophys., 141, 151158.Google Scholar
Taylor, D.B., Sinclair, A.D., Message, P.J.: 1987, Astron. Astrophys., 181, 383390.Google Scholar
Taylor, D.B.: 1992, Astron. Astrophys., 265, 825832.Google Scholar
Woltjer, J. Jr.: 1928, Annalen van de Sterrewachte Leiden XV.Google Scholar