Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-30T06:24:25.606Z Has data issue: false hasContentIssue false

Acceleration from Field-Aligned Potential Drops

Published online by Cambridge University Press:  12 April 2016

Gerhard Haerendel*
Affiliation:
Max-Planck-Institut für extraterrestrische Physik, 85740 Garching, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Unstable field-aligned currents are seen as the origin of field-aligned potential drops. They convert energy stored in magnetic shear stresses into kinetic energy. A good fraction of this energy is carried by runaway electrons and ions out of the acceleration region. The paper emphasizes the analogy with mechanical fractures. Simple expressions for the energy conversion rate and the parallel potential drop are derived, the two being linked by the critical current density needed for instability. The origin of the currents (generator) lies mostly in a region remote from that of energy conversion (fracture zone). The transmission of shear stresses and energy from the generator plasma, where the primary forces are applied to the fracture zone is also considered. A closed set of relations allows quantitative evaluation of the energetic particle production efficiency. The decoupling of the plasma on either side of the fracture zone which allows fast stress relief is described in detail, as well as a stationary model for the Alfvén wave interaction between fracture zone and generator plasma. A simple concept of the nature of the anomalous resistivity generated by the unstable current leads to an expression for the magnetic diffusivity inside the fracture zone and an estimate of the latter’s extent parallel to the magnetic field, whereas its width and length transverse to B follow from the macroscopic relations. Finally and as an example, the theory is applied to the problem of fast electron (and ion) acceleration well above 1 MeV seen to occur in many solar flares. It is obvious that this process belongs to the most powerful production processes of high-energy particles in stellar magnetic fields.

Subject headings: acceleration of particles — MHD — plasmas

Type
Stars
Copyright
Copyright © The American Astronomical Society 1994

References

Alfvén, H., & Fälthammar, C.-G. 1963, Cosmical Electrodynamics, Fundamental Principles (Oxford: Oxford Univ. Press)Google Scholar
Borovsky, J.E. 1993, J. Geophys. Res., 98, 6101 Google Scholar
Boström, R., Gustafsson, G., Holback, B., Holmgren, G., Koskinen, H., & Kintner, P. 1988, Phys. Rev. Lett., 61, 82 Google Scholar
Casserly, R.T., & Cloutier, P.A. 1975, J. Geophys. Res., 80, 2165 Google Scholar
Colgate, S. 1978, ApJ, 221, 1068 Google Scholar
Dubinin, E.M., Volokitin, A.A., Israelivich, P.L., & Nikalaeva, N.S. 1988, Planet. Space Sci., 36, 949 Google Scholar
Fridman, M., & Lemaire, J. 1980, J. Geophys. Res., 85, 664 Google Scholar
Goldreich, P., & Julian, W.H. 1969, ApJ, 157, 869 Google Scholar
Gorney, D.J., Clarke, A., Croley, D.R., Fennell, J.F., Luhmann, J.M., & Mizera, P.F. 1981, J. Geophys. Res., 86, 83 Google Scholar
Gurnett, D.A. 1972 in Critical Problems of Magnetospheric Physics, ed. Dyer, E.R. (Washington: Natl. Acad. Sci.), 123 Google Scholar
Haerendel, G. 1980, ESA J., 4, 197 Google Scholar
Haerendel, G. 1987, Proc. 21st ESLAB Symp., Bolkesjø, Norway (ESA SP-275), 205 Google Scholar
Haerendel, G. 1989, Proc. Varenna-Abastumani Intern. School & Workshop on Plasma Astrophysics, Varenna 1988 (ESA SP-285), vol. 1, 37 Google Scholar
Haerendel, G., Buchen, S., LaHoz, C., Raaf, B., & Rieger, E. 1993, J. Geophys. Res., 98, 6087 Google Scholar
Hallinan, T.J., & Davis, T.N. 1970, Planet. Space Sci., 18, 1735 Google Scholar
Iijima, T., & Potemra, T.A. 1976, J. Geophys. Res., 81, 5971 Google Scholar
Kindel, J.M., & Kennel, C.F. 1971, J. Geophys. Res., 76, 3055 Google Scholar
Knight, S. 1973, Planet. Space Sci., 21, 741 Google Scholar
Lyons, L.R. 1980, J. Geophys. Res., 85, 17 Google Scholar
Lysak, R.L., & Dum, C.T. 1983, J. Geophys. Res., 88, 365 Google Scholar
Mozer, F.S., Carlson, C.W., Hudson, M.K., Torbert, R.B., Parady, B., Yatteau, J., & Kelly, M.C. 1977, Phys. Rev. Lett., 38, 292 CrossRefGoogle Scholar
Papadopoulos, K. 1977, Rev. Geophys. Space Phys., 15, 113 Google Scholar
Parker, E.N. 1987, Sol. Phys., 111, 297 Google Scholar
Persoon, A.M., Gurnett, D.A., Petersen, W.K., Waite, J.H., Burch, J.L., & Green, J.L. 1988, J. Geophys. Res., 93, 1871 Google Scholar
Rieger, E., & Marschäuser, H. 1990, Proc. MAX 91 Workshop no. 3, ed. Winglee, R.M. & Kiplinger, A.L. (Boulder: Univ. of Colorado Press), 68 Google Scholar
Sakai, J.-I., & Ohsawa, Y. 1987, Space Sci. Rev., 46, 113 Google Scholar
Sharp, R.D., Johnson, R.G., & Shelley, E.G. 1977, J. Geophys. Res., 82, 3324 Google Scholar
Temerin, M., Cerny, K., Lotko, W., & Mozer, F.S. 1982, Phys. Rev. Lett., 48, 1175 Google Scholar
Vasyliunas, V.M. 1975, Rev. Geophys. Space Phys., 13, 303 Google Scholar
Vlahos, L. 1989, Sol. Phys., 121, 431 Google Scholar
Wescott, E.M., Stenback-Nielsen, H.C., Hallinan, T.J., & Davis, T.N. 1976, J. Geophys. Res., 81, 4495 Google Scholar