Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T12:36:28.294Z Has data issue: false hasContentIssue false

8. Genetic Relations among Meteorites and Planets

Published online by Cambridge University Press:  12 April 2016

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

On the basis of 180/160 and 170/160 ratios, meteorites and planets can be grouped into at least nine categories, as follows (in order of increasing 1°0): (1) type L and LL ordinary chondrites; (2) type H ordinary chondrites, type HE irons, and CI carbonaceous chondrites; (3) the nakhlites and Shergotty; (4) the earth, moon, and enstatite chondrites and achondrites; (5) basaltic achondrites, hypersthene achondrites, mesosiderites, pallasites and type IRB irons; (6) the ureilites; (7) C2 carbonaceous chondrite matrix, Bencubbin, Weatherford, and Kakangari; (8) C3 carbonaceous chondrites; (9) pallasites Eagle Station and Itzawisis. Objects of one category cannot be derived by fractionation or differentiation from the source materials of any other category, but must represent samples of different regions of an i nhomogeneous solar nebula. The isotopic classification, together with major-element abundances, provides a powerful method for recognition of interrelationships of the various meteorites and their parent bodies.

Type
Part IX. The Primitive Solar Nebula
Copyright
Copyright © A.H. Delsemme 1977

References

Allegre, C. J., Birck, J. L., Fourcade, S., and Semet, M. P. 1975, Science, 187, 436.CrossRefGoogle Scholar
Anders, E. 1971, Geochim. Cosmochim. Acta, 35, 516.Google Scholar
Buseck, P. R., and Goldstein, J. L. 1969, Geol. Soc. Amer. Bull. 80, 2141.CrossRefGoogle Scholar
Clayton, R. N., Grossman, L., and Mayeda, T. K. 1973, Science 182, 485.Google Scholar
Clayton, R. N., and Mayeda, T. K. 1975, Proc. Lunar Sci. Conf. 6th, Geochim. Cosmochim. Acta, p. 1761.Google Scholar
Clayton, R. N., Onuma, N., and Mayeda, T. K. 1976, Earth Planet. Sci. Lett. 30, 10.CrossRefGoogle Scholar
Clayton, R. N. 1976 (this volume).Google Scholar
Clayton, R. N., Onuma, N., Grossman, L., and Mayeda, T. K. 1977, Earth Planet. Sci. Lett, (in press).Google Scholar
Gray, C. M., Papanastassiou, D. A., and Wasserburg, G. J. 1973, Icarus, 20, 213.CrossRefGoogle Scholar
Grossman, L. 1972, Geochim. Cosmochim. Acta, 36, 597.CrossRefGoogle Scholar
Larimer, J. W., and Anders, E. 1967, Geochim. Cosmochim. Acta, 31, 1239.Google Scholar
Larimer, J. W. 1975, Geochim. Cosmochim. Acta, 39, 389.CrossRefGoogle Scholar
Lovering, J. F. 1969, in Researches on Meteorites (ed. Moore, C. B.), p. 179, John, Wiley.Google Scholar
Scott, E.D.R., and Wasson, J. T. 1975, Rev. Geophys. Space Phys. 13, 527.Google Scholar
Wasson, J. T. 1970, Geochim. Cosmochim. Acta, 34, 957.Google Scholar