Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T12:53:28.175Z Has data issue: false hasContentIssue false

8. Asteroid Versus Comet Discrimination from Orbital Data

Published online by Cambridge University Press:  12 April 2016

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The orbital comet-asteroid criteria, their premises, dynamical reasoning, and ranges of applicability are reviewed. Mapping of all known comets and asteroids in a plane of energy intergral in the two body problem (1/a) vs. that in the restricted three-body problem (Tisserand invariant) is presented. The potential evolutionary paths from different sources of active comets into short-period orbits are delineated and interfaced with the process of reducing the perihelion distances of the asteroids. The significance of resonances with Jupiter is emphasized. Statistics of observed close approaches of individual comets and asteroids to the Earth is analyzed to estimate their relative fluxes. Active cometary nuclei are found to represent about 1/8 of the flux of objects with radii exceeding 1 km in the vicinity of the Earth, and their contribution tends to diminish significantly for still smaller bodies. However, there is no evidence against comets leaving inactive asteroid-like nuclei with considerable lifetimes which may represent a significant, though secondary, source of meteors and even meteor streams. An overwhelming majority of the Apollo and Amor objects are suggested to be of asteroidal nature; the most probable exceptions are selected and recommended for detailed observation.

Type
Part V. Orbital Evolution and Fragmentation of Asteroids
Copyright
Copyright © A.H. Delsemme 1977

References

Anders, E., and Arnold, J. R. 1965, Science, 149, 1494.CrossRefGoogle Scholar
Anders, E., and Mellick, P. J. 1969, in Meteorite Research, ed. Millman, P. M., Astrophys. Space Sci. Libr. 12, Reidel, Dordrecht, p. 559.Google Scholar
Chebotarev, G. A., ed. 1975, Efemeridy Malykh Planet 1976, Nauka, Leningrad.Google Scholar
Chebotarev, G. A., Belyaev, N. A., and Eremenko, R. P. 1972, in The Motion, Evolution of Orbits, and Origin of Comets, IAU Symp. 45, p. 431.CrossRefGoogle Scholar
Delsemme, A. H. 1973, Astron. Astrophys., 29, 377.Google Scholar
Everhart, E. 1968, Astron. J., 73, 1039.Google Scholar
Everhart, E. 1969, Astron. J., 74, 735.CrossRefGoogle Scholar
Everhart, E. 1969, astrophys. Letters, 10, 131.Google Scholar
Everhart, E. 1973a, Astron. J., 78, 316.CrossRefGoogle Scholar
Everhart, E. 1973b, Astron. J., 78, 329.Google Scholar
Everhart, E. 1976, in The Study of Comets, IAU Coll. 25 = NASA SP-393, p. 445.Google Scholar
Franklin, F. A., Marsden, B. G., Williams, J. G., and Bardwell, C. M. 1975, Astron. J., 80, 729.Google Scholar
Gehrels, T. 1972, in From Plasma to Planet, Nobel Symp., Almquist and Wicksell, Stockholm, p. 169.Google Scholar
Jacchia, L. G., and Whipple, F. L. 1961, Smithson. Contr. Astrophys. 4, 97.Google Scholar
Jacchia, L. G., Verniani, F., and Briggs, R. E. 1967, Smithson. Contr. Astrophys., 10, 1.CrossRefGoogle Scholar
Kazimirchak-Polonskaya, E. I. 1967, Astron. Zh. 44, 439.Google Scholar
Kazimirchak-Polonskaya, E. I. 1971, Byul. Inst. Teor. Astron. Leningrad, 12, 796.Google Scholar
Kazimirchak-Polonskaya, E. I. 1972, in The Motion, Evolution of Orbits, and Origin of Comets, IAU Symp. 45, p. 373.Google Scholar
Kozai, Y. 1962, Astron. J., 67, 591.CrossRefGoogle Scholar
Kresák, L. 1967, in Meteor Orbits and Dust, Smithson. Contr. Astrophys., 11, NASA SP-135, p. 9.Google Scholar
Kresák, L. 1969, Bull. Astron. Inst. Czech., 20, 177.Google Scholar
Kresák, L. 1972a, in The Motion, Evolution of Orbits, and Origin of Comets, IAU Symp. 45, p. 503.CrossRefGoogle Scholar
Kresák, L. 1972b, Bull, astron. Inst. Czech., 23, 1.Google Scholar
Kresák, L. 1973, in Evolutionary and Physical Properties of Meteoroids, IAU Coll. 13, NASA SP-319, p. 331.Google Scholar
Kresák, L. 1977, Bull. Astron. Inst. Czech., 28, in print.Google Scholar
Kresáková, M. 1974, Bull. Astron. Inst. Czech., 25, 191.Google Scholar
Lowrey, B. E. 1973, Astron. J., 78, 428.Google Scholar
Marsden, B. G. 1970, in Periodic Orbit, Stability and Resonances, ed. Giacaglia, G.E.O., Reidel, Dordrecht, p. 151.Google Scholar
Marsden, B. G. 1971, in Physical Studies of Minor Planets, IAU Coll. 12, NASA SP-267, p. 413.Google Scholar
Marsden, B. G. 1975, Catalogue of Cometary Orbits, Centr. Bur. Telegr. Astron., Cambridge, Mass.Google Scholar
Oort, J. H. 1950, Bull. Astron. Inst. Netherlands, 11, 91.Google Scholar
Öpik, E. J. 1963, Adv. Astron. Astrophys., 2, 219.Google Scholar
Öpik, E. J. 1973, Astrophys. Space. Sci., 21, 307.Google Scholar
Rabe, E. 1971, in Physical Studies of Minor Planets, IAU Coll. 12, NASA SP-267, p. 407.Google Scholar
Rabe, E. 1974, in Asteroids, Comets, Meteoric Matter, IAU Coll. 22, Editura Acad. Bucharest, p. 165.Google Scholar
Sekanina, Z. 1971, in Physical Studies of Minor Planets, IAU Coll. 12, NASA SP-267, p. 423.Google Scholar
Sekanina, Z. 1973, Icarus, 18, 253.CrossRefGoogle Scholar
Sitarski, G. 1968, Acta Astron. 18, 171.Google Scholar
Vaghi, S. 1973a, Astron. Astrophys., 24, 107.Google Scholar
Vaghi, S. 1973b, Astron. Astrophys., 29, 85.Google Scholar
Weidenschilling, S. J. 1975, Astron. J., 80, 145.Google Scholar
Wetherill, G. W., and Williams, J. G. 1968 J. Geophys. Res., 73, 635.Google Scholar
Whipple, F. L. 1954, Astron. J., 59, 201.Google Scholar
Whipple, F. L. 1964, Proc. Nat. Acad. Sci., 51, 711.Google Scholar
Whipple, F. L. 1973, The Moon, 8, 340.Google Scholar
Whipple, F. L. 1976, Icarus, in print.Google Scholar
Whipple, F. L., and Huebner, W. F. 1976, Ann. Rev. Astron. Astrophys., in print.Google Scholar
Williams, J. G., and Wetherill, G. W. 1973, Astron. J., 78, 510.Google Scholar
Zimmerman, P. D., and Wetherill, G. W. 1973, Science, 182, 51.CrossRefGoogle Scholar