Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T12:52:16.479Z Has data issue: false hasContentIssue false

5. The Chemical Relationship between Howardites and the Silicate Fraction of Mesosiderites

Published online by Cambridge University Press:  12 April 2016

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Analyses of eleven major elements in five howardite samples and in the silicate fraction of seven mesosiderites are presented in a recalculated form and compared. The mesosiderite silicate fractions show distinct differences in chemical composition from the howardites, but the average Ca/Al determined for mesosiderites (1.05), which differs from most values previously published, is close to that typical of howardites (1.08). The inverse Ca/Mg relationship in the howardites is present also in the mesosiderites, the trend being displaced relative to that of the howardites but parallel to it. The chemical differences confirm that mesosiderites are not mixtures of howardite and metal. The Ca/Al and Ca/Mg relationships suggest that the two meteorite groups were subject to similar genetic controls, and may therefore have had a common parent body. Such a body is required by the cooling rate of the metal of mesosiderites to have been larger than any known asteroid.

Type
Part VII. Differentiated Meteorites
Copyright
Copyright © A.H. Delsemme 1977

References

Ahrens, L. H., and Danchin, R. V. 1971, Phys. chem. Earth 8, 265, Pergamon Press.Google Scholar
Ahrens, L. H., and von Michaelis, H. 1969, Earth Planet. Sci. Lett., 6, 304.Google Scholar
Begemann, F., Weber, H. W., Vilcsek, E., and Hintenberger, H. 1976, Geochim. Cosmochim. Acta, 40, 353.CrossRefGoogle Scholar
Duke, M. B., and Silver, L. T. 1967, Geochim. Cosmochim. Acta, 31, 1637.CrossRefGoogle Scholar
Desnoyers, C., and Jerome, D. Y. 1977, Geochim. Cosmochim. Acta, 41, 81.CrossRefGoogle Scholar
Dymek, R. F., Albee, A. L., Chodos, A. A., and Wasserburg, G. J. 1976, Geochim. Cosmochim. Acta, 40, 1115.Google Scholar
Jarosewich, E., and Mason, B. 1969, Geochim. Cosmochim. Acta, 33, 411.Google Scholar
Jerome, D. Y. 1970, Ph.D. Thesis, Univ. Oregon.Google Scholar
McCarthy, T. S., and Ahrens, L. H. 1971, Earth Planet. Sci. Lett., 11, 35.Google Scholar
McCarthy, T. S., Ahrens, L. H., and Erlank, A. J. 1972, Earth Planet. Sci. Lett., 15, 86.CrossRefGoogle Scholar
Mason, B., and Jarosewich, E. 1973, Mineral. flag., 39, 204.Google Scholar
Nelen, J., and Mason, B. 1972, Smithsonian Contrib. Earth Sci., 9, 55.Google Scholar
Powell, B. N. 1969, Geochim. Cosmochim. Acta, 33, 789.CrossRefGoogle Scholar
Powell, B. N. 1971, Geochim. Cosmochim. Acta, 35, 5.Google Scholar
Prior, G. T. 1918, Mineral. Mag., 85, 151.Google Scholar
Simpson, A. B. 1977, Geochim. Cosmochim. Acta, submitted.Google Scholar
Taylor, H. P., and Epstein, S. 1970, Proc. Apollo 11 Lunar Sci. Conf., 2, 1613.Google Scholar
Taylor, H. P., Duke, M. B., Silver, L. T., and Epstein, S. 1965, Geochim. cosmochim. Acta, 29, 489.Google Scholar
Wiik, H. B. 1969, Soc. Sci. Fennica, Comm. Phys. - Math., 34, 135.Google Scholar
Willis, J. P., Ahrens, L. H., Danchin, R. V., Erlank, A. J., Gurney, J. J., Hofmeyr, P. K., McCarthy, T. S., and Orren, M. J. 1971, Proc. Second Lunar Sci. Conf., 2, 1123, M.I.T. Press.Google Scholar
Willis, J. P., Erland, A. J., Gurney, J. J., Theil, R. H., and Ahrens, L. H. 1972, Proc. Third Lunar Sci. Conf., 2, 1269, M.I.T. Press.Google Scholar