Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T07:58:10.825Z Has data issue: false hasContentIssue false

4. Asteroid Surface Compositions from Infrared Spectroscopic Observations: Results and Prospects

Published online by Cambridge University Press:  12 April 2016

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Advances in IR detector technology, the increased availability of large aperture telescopes, and the techniques of Fourier transform spectroscopy (FTS) now permit IR (λ > 1μ) spectroscopic observations of asteroid surfaces. Asteroids already observed include Ceres, Vesta, and Eros. These initial results demonstrate that such studies can contribute new data concerning asteroid compositions. Some of the most diagnostic features of mineral spectra are in the IR spectral region, and for featureless spectra characterized only by slopes the extension of the spectral reflectivity curve into the IR provides tighter constraints on possible mineralogies. A systematic study of additional asteroids should exploit even further this new observational link to problems of meteorite origin and solar system evolution.

Type
Part IV. Physical Nature of Asteroids
Copyright
Copyright © A.H. Delsemme 1977

References

Adams, J. B. 1974, J. Geophys. Res., 79, 4829.Google Scholar
Adams, J. B. 1975, in Infrared and Raman Spectroscopy of Lunar and Terrestrial Minerals, (New York: Academic Press, 1975), p. 91.Google Scholar
Chapman, C. R., and Salisbury, J. W. 1973, Icarus, 19, 507.Google Scholar
Chapman, C. R., and Morrison, D. 1976, Icarus, 28, 91.Google Scholar
Connes, P., and Michel, G. 1975, Appl. Opt. 14, 2067.Google Scholar
Fink, U., Dekkers, N. H., and Larson, H. P. 1973, Astrophys. J. Lett., 179, 1087.Google Scholar
Fink, U., Larson, H. P., Treffers, R. R., and Gautier, T. N. 1976, Astrophys. J. Lett., 207, L63.Google Scholar
Gaffey, M. J. 1974, Ph.D. Thesis, Mass. Inst. Tech., Cambridge.Google Scholar
Gaffey, M. J. 1976, J. Geophys. Res., 81, 905.Google Scholar
Hunt, G. R., and Salisbury, J. W. 1970, Modern Geology, 1, 283.Google Scholar
Hunt, G. R., Salisbury, J. W., and Lenhoff, C. J. 1974, Modern Geology, 5, 15., contains references to previous papers in series.Google Scholar
Johnson, T. V., and Fanale, F. P. 1973, J. Geophys. Res., 78, 8507.Google Scholar
Larson, H. P., and Fink, U. 1975a, Appl. Opt., 14, 2085.Google Scholar
Larson, H. P., and Fink, U. 1975b, Icarus, 26, 420.Google Scholar
Larson, H. P., Fink, U., Treffers, R. R., and Gautier, T. N. 1976, Icarus, 28, 95.CrossRefGoogle Scholar
Larson, H. P., and Fink, U. 1976a, submitted to Appl. Spectrosc.Google Scholar
Larson, H. P., and Fink, U. 1976b, in preparation.Google Scholar
McCord, T. B., Adams, J. B., and Johnson, T. V. 1970, Science, 168, 1445.Google Scholar
McFadden, L., Pieters, C., and McCord, T. B. 1976, Bull. Am. Astron. Soc., in press.Google Scholar
Nash, D. B., and Conel, J. E. 1974, J. Geophys. Res., 79, 1615.Google Scholar
Pieters, C., Gaffey, M. J., Chapman, C. R., and McCord, T. B. 1976, Icarus, 28, 105.Google Scholar
Pilcher, C. B., Ridgway, S. T., and McCord, T. B. 1972, Science, 178, 1087.Google Scholar
Salisbury, J. W., Hunt, G. R., and Lenhoff, C. J. 1975, Modern Geology, 5, 115.Google Scholar
Veeder, G. J., Matson, D. L., Bergstrahl, J. T., and Johnson, T. V. 1976, Icarus, 28, 79.Google Scholar
Wisniewski, W. Z. 1976, Icarus 28, 87.Google Scholar