Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T12:32:31.288Z Has data issue: false hasContentIssue false

1. High-Temperature Condensates in Carbonaceous Chondrites

Published online by Cambridge University Press:  12 April 2016

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Equilibrium thermodynamic calculations of the sequence of condensation of minerals from a cooling gas of solar composition play an important role in explaining the mineralogy and trace element content of different types of inclusions in carbonaceous chondrites. Group IV B iron meteorites and enstatite chondrites may also be direct condensates from the solar nebula. Condensation theory provides a framework within which chemical fractionations between different classes of chondrites may be understood.

Type
Part IX. The Primitive Solar Nebula
Copyright
Copyright © A.H. Delsemme 1977

References

Anders, E. 1968, Ace. Chom. Res., 1, 289.CrossRefGoogle Scholar
Anders, E. 1971, Geochim-Cosmocbim. Acta, 35, S16.Google Scholar
Blander, M. and Fuchs, L. H. 1975, Geochim. Cosmochim. Acta, 39, 1605.CrossRefGoogle Scholar
Roynton, W. V. 1975, Geochim. Cosmochim. Acta, 39, 569.CrossRefGoogle Scholar
Cameron, A.G.W. 1973, Space Sci. Rev., 15, 121.CrossRefGoogle Scholar
Chou, C.-L., Baedecker, P. A., and Wasson, J. T. 1976, Geochim. Cosmochim. Acta, 40, 85.Google Scholar
Clarke, R. S. Jr., Jarosewich, E., Mason, B., Nelen, J., Gomez, M., and Hyde, J. R. 1970, Smithson. Contrib. Earth Sci., 5, 1.Google Scholar
Clayton, R. N. 1977, in The Interrelated Origin of Comets, Asteroids and Meteorites (editor Delsemme, A. H.; Toledo: University of Toledo).Google Scholar
Ganapathy, R., and Anders, E. 1974, in Proc. Fifth Lunar Sci. Conf. (editor Gose, W. A.; New York: Pergamon Press), Vol. 2, p. 1181.Google Scholar
Grossman, L. 1976, in Proc. Soviet-American Conf. Cosmochem. Moon and Planets (editor Pomeroy, J. H.; Washington: U.S. Government Printing Office), in press.Google Scholar
Grossman, I.., Fruland, R. M., and McKay, D. S. 1975, Geophys. Res. Lett., 2, 37.CrossRefGoogle Scholar
Grossman, L., and Ganapathy, R. 1976a, Geochim. Cosmochim. Acta, 40, 331.CrossRefGoogle Scholar
Grossman, L., and Ganapathy, R. 1976b, Geochim. Cosmochim. Acta, 40, 967.CrossRefGoogle Scholar
Grossman, L., and Larimer, J. W. 1974, Revs. Geophys. Space Phys., 12, 71.CrossRefGoogle Scholar
Grossman, L., and Olsen, E. 1974, Geochim. Cosmochim. Acta, 38, 173.CrossRefGoogle Scholar
Grossman, L., and Steele, I. M. 1976, Geochim. Cosmochim. Acta, 10, 149.CrossRefGoogle Scholar
Kelly, W. R., and Larimer, J. W. 1976, Geochim. Cosmochim. Acta, in press.Google Scholar
Kurat, G. 1970, Earth Planet. Sci. Lett., 9, 225.CrossRefGoogle Scholar
Kurat, G., Hoinkes, G., and Fredriksson, K. 1975, Earth Planet. Sci. Lett., 26, 140.CrossRefGoogle Scholar
Larimer, J. W. 1968, Geochim. Cosmochim. Acta, 32, 965.CrossRefGoogle Scholar
Larimer, J. W., and Anders, E. 1970, Geochim. Cosmochim. Acta, 34, 367.CrossRefGoogle Scholar
Larimer, J. W., and Bartholomay, M. 1976, Geochim. Cosmochim. Acta, in press.Google Scholar
Marvin, B. II, Wood, J. A., and Dickey, J. S. Jr. 1970, Earth Planet. Sci. Lett., 7, 346.CrossRefGoogle Scholar
Scott, E.R.D., and Wasson, J. T. 1975, Revs. Geophys. Space Phys., 13, 527.CrossRefGoogle Scholar
Urey, H C., and Craig, H. 1953, Geochim. Cosmochim. Acta, 4, 36.CrossRefGoogle Scholar