Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-17T18:22:59.013Z Has data issue: false hasContentIssue false

Screening for Multidrug-Resistant Bacteria as a Predictive Test for Subsequent Onset of Nosocomial Infection

Published online by Cambridge University Press:  21 June 2016

L. Galoisy-Guibal
Affiliation:
Service d'Information Médicale, Hôpital d'Instruction des Armées Desgenettes, and the Service de Biostatistique, Hospices Civils de Lyon, Lyon, France
J. L. Soubirou
Affiliation:
Service de Réanimation, Hôpital d'Instruction des Armées Desgenettes, and the Service de Biostatistique, Hospices Civils de Lyon, Lyon, France
G. Desjeux
Affiliation:
Service d'Information Médicale, Hôpital d'Instruction des Armées Desgenettes, and the Service de Biostatistique, Hospices Civils de Lyon, Lyon, France
J. Y. Dusseau
Affiliation:
Laboratoire de Biologie, Hôpital d'Instruction des Armées Desgenettes, and the Service de Biostatistique, Hospices Civils de Lyon, Lyon, France
O. Eve
Affiliation:
Service d'Information Médicale, Hôpital d'Instruction des Armées Desgenettes, and the Service de Biostatistique, Hospices Civils de Lyon, Lyon, France
J. Escarment
Affiliation:
Service de Réanimation, Hôpital d'Instruction des Armées Desgenettes, and the Service de Biostatistique, Hospices Civils de Lyon, Lyon, France

Abstract

Objective.

To investigate whether carriage of multidrug-resistant bacteria is a risk factor for nosocomial infection and whether detection of carriage is predictive of subsequent onset of nosocomial infection.

Methods.

In this observational cohort (study period, June 1998 through October 2002), nasal and rectal swab specimens from 412 consecutive patients admitted to the intensive care unit were tested for carriage of multidrug-resistant bacteria. Concomitantly, the bacteria responsible for any subsequent nosocomial infection, the date of infection, and some of the known clinical risk factors for nosocomial infection were noted. These factors were adjusted for potential confounders, using a Cox model stratified on the propensity score of multidrug-resistant bacteria carriage. The diagnostic characteristics of a carriage test, including the positive and negative diagnostic likelihood ratios, were calculated for all strata of the propensity score.

Results.

Forty-two patients were carrying multidrug-resistant bacteria. Nosocomial infection occurred in 95 patients, of whom 16 (38%) were carriers, and 79 (83%) were noncarriers (P = .01). After adjustment for potential confounders, statistical analysis revealed that carriage remained a risk factor for nosocomial infection (relative risk, 2.08 [95% confidence interval {CI}, 1.13-3.81]). Receipt of antibiotic treatment at the time of intensive care unit admission was found to be protective against nosocomial infection. A positive result of test for detection of carriage seemed to be an efficient predictor of subsequent nosocomial infection (positive diagnostic likelihood ratio, 2.05 [95% CI, 1.15-3.66]), although a negative test result was not a predictor of subsequent nosocomial infection (negative likelihood ratio, 0.91 [95% CI, 0.73-1.11]).

Conclusion.

Carriage proved to be a risk factor for subsequent nosocomial infection. However, the carriage test was useful as a predictive tool only for patients with a positive test result.

Type
Original Articles
Copyright
Copyright © The Society for Healthcare Epidemiology of America 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Vincent, JL, Bihari, DJ, Suter, PM, et al. The prevalence of nosocomial infection in intensive care units in Europe: results of the European Prevalence of Infection in Intensive Care (EPIC) Study. The EPIC International Advisory Committee. JAMA 1995; 274:639644.Google Scholar
2. Safdar, N, Maki, DG. The commonality of risk factors for nosocomial colonization and infection with antimicrobial-resistant Staphylococcus aureus, enterococcus, gram-negative bacilli, Clostridium difficile, and Candida . Ann Intern Med 2002; 136:834844.Google Scholar
3. Lucet, JC, Chevret, S, Durand-Zaleski, I, Chastang, C, Regnier, B. Prevalence and risk factors for carriage of methicillin-resistant Staphylococcus aureus at admission to the intensive care unit: results of a multicenter study. Arch Intern Med 2003; 163:181188.Google Scholar
4. Simor, AE, Ofner-Agostini, M, Bryce, E, et al. Canadian Nosocomial Infection Surveillance Program, Health Canada. CMAJ 2001; 165:3132.Google Scholar
5. The Hôpital Propre Study Group. Methicillin-resistant Staphylococcus aureus in French hospitals: a 2-month survey in 43 hospitals, 1995. Infect Control Hosp Epidemiol 1999; 20:478486.Google Scholar
6. Cookson, B. Controversies: is it time to stop searching for MRSA? BMJ 1997; 314:664.Google Scholar
7. Chaix, C, Durand-Zaleski, I, Alberti, C, Brun-Buisson, C. Control of endemic methicillin-resistant Staphylococcus aureus: a cost-benefit analysis in an intensive care unit. JAMA 1999; 282:17451751.Google Scholar
8. Karchmer, TB, Durbin, LJ, Simonton, BM, Farr, BM. Cost-effectiveness of active surveillance cultures and contact/droplet precautions for control of methicillin-resistant Staphylococcus aureus . J Hosp Infect 2002; 51:126132.CrossRefGoogle ScholarPubMed
9. Stone, PW, Larson, E, Kawar, LN. A systematic audit of economic evidence linking nosocomial infections and infection control interventions: 1990-2000. Am J Infect Control 2002; 30:145152.Google Scholar
10. Jarvis, WR. Selected aspects of the socioeconomic impact of nosocomial infections: morbidity, mortality, cost, and prevention. Infect Control Hosp Epidemiol 1996; 17:552557.Google Scholar
11. Zahar, JR, Clec'h, C, Tafflet, M, et al. Is methicillin resistance associated with a worse prognosis in Staphylococcus aureus ventilator-associated pneumonia? The Outcomerea Study Group. Clin Infect Dis 2005; 41:12241231.Google Scholar
12. Thompson, R, Cabezudo, I, Wenzel, R. Epidemiology of nosocomial infections caused by methicillin-resistant Staphylococcus aureus . Ann Intern Med 1982; 97:309317.Google Scholar
13. Von Eiff, C, Becker, K, Machka, K, Stammer, H, Peters, G. Nasal carriage as a source of Staphylococcus aureus bacteremia. N Engl J Med 2001; 344:1116.Google Scholar
14. Porter, R, Subramani, K, Thomas, AN, Chadwick, P. Nasal carriage of Staphylococcus aureus on admission to intensive care: incidence and prognostic significance. Intensive Care Med 2003; 29:655658.Google Scholar
15. Kluytmans, JA, Mouton, JW, Ijzerman, EP, et al. Nasal carriage of Staphylococcus aureus as a major risk factor for wound infections after cardiac surgery. J Infect Dis 1995; 171:216219.Google Scholar
16. Wenzel, RP, Perl, TM. The significance of nasal carriage of Staphylococcus aureus and the incidence of postoperative wound infection. J Hosp Infect 1995;31:1324.Google Scholar
17. Kalmeijer, MD, van Nieuwland-Bollen, E, Bogaers-Hofman, D, de Baere, GA. Nasal carriage of Staphylococcus aureus is a major risk factor for surgical-site infections in orthopedic surgery. Infect Control Hosp Epidemiol 2000;21:319323.Google Scholar
18. Pujol, M, Pena, C, Pallares, R, et al. Nosocomial Staphylococcus aureus bacteremia among nasal-carriers of methicillin-resistant and methicillin-susceptible strains. Am J Med 1996; 100:509516.Google Scholar
19. Jensen, AG, Wachmann, CH, Poulsen, KB, et al. Risk factors for hospital-acquired Staphylococcus aureus bacteremia. Arch Intern Med 1999; 159:14371444.Google Scholar
20. Garrouste-Orgeas, M, Chevret, S, Arlet, G, et al. Oropharyngeal or gastric colonization and nosocomial pneumonia in adult intensive care unit patients: a prospective study based on genomic DNA analysis. Am J Respir Crit Care Med 1997; 156:16471655.Google Scholar
21. Garrouste-Orgeas, M, Marie, O, Rouveau, M, Villiers, S, Arlet, G, Schlemmer, B. Secondary carriage with multi-resistant Acinetobacter baumannii and Klebsiella pneumoniae in an adult ICU population: relationship with nosocomial infections and mortality. J Hosp Infect 1996; 34:279289.Google Scholar
22. Pena, C, Pujol, M, Ardanuy, C, et al. Epidemiology and successful control of a large outbreak due to Klebsiella pneumoniae producing extended-spectrum β-lactamases. Antimicrob Agents Chemother 1998; 42:5358.Google Scholar
23. REANIS. Guide pour la prevention des infections nosocomiales en réanimation. Paris, France: Arnette; 1994.Google Scholar
24. Lepape, A, Savey, A, Pinzaru, G, Arich, C, Aubas-Parer, S. Surveillance enréseau des infections nosocomiales en réanimation: l'expérience de Réa Sud Est. Bulletin d' Epidemiologie Hebdomadaire 1999; 5:15.Google Scholar
25. Knaus, WA, Draper, EA, Wagner, DP, Zimmermab, JE. APACHE II: a severity of disease classification system. Crit Care Med 1985; 13:818829.Google Scholar
26. Le Gall, JR, Lemesow, S, Saulnier, F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA 1993; 270:29572963.Google Scholar
27. Rosenbaum, PR. Observational Studies. New York: Springer-Verlag; 1995:200224.Google Scholar
28. D'Agostino, RB. Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Stat Med 1998; 17:22652281.Google Scholar
29. Rubin, DB, Thomas, N. Matching using estimated propensity scores: relating theory to practice. Biometrics 1996; 52:249264.Google Scholar
30. Sox, HC Jr, Blatt, MA, Higgins, MC, Marten, KI. Medical Decision Making. Boston: Butterworth-Heinemann; 1988:7577.Google Scholar
31. Kluytmans, J, van Belkum, A, Verbrugh, H. Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clin Microbiol Rev 1997; 10:505520.CrossRefGoogle ScholarPubMed
32. Kluytmans, JA, Mouton, JW, VandenBergh, MF, et al. Reduction of surgical-site infections in cardiothoracic surgery by elimination of nasal carriage of Staphylococcus aureus . Infect Control Hosp Epidemiol 1996; 17:780785.Google Scholar
33. Talon, D, Rouget, C, Cailleaux, V, et al. Nasal carriage of Staphylococcus aureus and cross-contamination in a surgical intensive care unit: efficacy of mupirocin ointment. J Hosp Infect 1995; 30:3949.Google Scholar
34. Squier, C, Rihs, JD, Risa, KJ, et al. Staphylococcus aureus rectal carriage and its association with infections in patients in a surgical intensive care unit and a liver transplant unit. Infect Control Hosp Epidemiol 2002; 23:495501.Google Scholar
35. Niclaes, L, Buntinx, F, Banuro, F, Lesaffre, E, Heyrman, J. Consequences of MRSA carriage in nursing home residents. Epidemiol Infect 1999; 122:235239.Google Scholar
36. Nguyen, MH, Kauffman, CA, Goodman, RP, et al. Nasal carriage of and infection with Staphylococcus aureus in HIV-infected patients. Ann Intern Med 1999; 130:221225.Google Scholar
37. Chang, FY, Singh, N, Gayowski, T, Wagener, MM, Marino, IR. Staphylococcus aureus nasal colonization in patients with cirrhosis: prospective assessment of association with infection. Infect Control Hosp Epidemiol 1998; 19:328332.Google Scholar
38. Piraino, B, Perlmutter, JA, Holley, JL, Bernardini, J. Staphylococcus aureus peritonitis is associated with Staphylococcus aureus nasal carriage in peritoneal dialysis patients. Perit Dial Int 1993; 13(Suppl 2):332334.Google Scholar
39. Mitsuda, T, Arai, K, Fujita, S, Yokota, S. Epidemiological analysis of strains of methicillin-resistant Staphylococcus aureus (MRSA) infection in the nursery; prognosis of MRSA carrier infants. J Hosp Infect 1995; 31:123134.Google Scholar
40. Prévention fes infections à bactéries multirésistantes en réanimation. XVIème Conférence de Consensus de la Société de Réanimation de Langue Française; November 21, 1996; Villejuif, France. Villejuif, France: Centre d'Information Scientifique de l'ARC. Available at: http://www.sfar.org/srlfsfar/prevbmrreaccons.html.Accessed October 1, 2006.Google Scholar