Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-03T15:33:19.471Z Has data issue: false hasContentIssue false

Relationship between the Prevalence of Methicillin-Resistant Staphylococcus aureus Infection and Indicators of Nosocomial Infection Control Measures A Population-Based Study in French Hospitals

Published online by Cambridge University Press:  02 January 2015

Leslie Grammatico-Guillon*
Affiliation:
Institut de Veille Sanitaire, Paris University Hospital, Tours, France
Jean-Michel Thiolet
Affiliation:
Institut de Veille Sanitaire, Paris
Pascale Bernillon
Affiliation:
Institut de Veille Sanitaire, Paris
Bruno Coignard
Affiliation:
Institut de Veille Sanitaire, Paris
Babak Khoshnood
Affiliation:
Université Pierre et Marie Curie, Paris Epidemiological Research Unit on Perinatal and Women's Health, Villejuif, France
Jean-Claude Desenclos
Affiliation:
Institut de Veille Sanitaire, Paris
*
Leslie Grammatico-Guillon, MD, Service de médecine interne et maladies infectieuses, Centre hospitalier universitaire de Tours, 2, bid Tonnellé, 37 000 Tours, France( [email protected])

Abstract

Objective.

To assess whether infection control indicators are associated with the prevalence of methicillin-resistant Staphylococcus aureus (MRSA) infection in French hospitals.

Methods.

We linked the database for the 2006 national prevalence survey of nosocomial infection with the database of infection control indicators (comprised of ICALIN, an indicator of infection control organization, resources, and action, and ICSHA, an indicator of alcohol-based handrub consumption) recorded from hospitals by the Ministry of Health. Data on MRSA infection were obtained from the national prevalence survey database and included the site and origin of infection, the microorganism responsible, and its drug resistance profile. Because the prevalence of MRSA infection was low and often nil, especially in small hospitals, we restricted our analysis to hospitals with at least 300 Patients. We used a multilevel logistic regression model to assess the joint effects of patient-level variables (eg, age, sex, or infection) and hospital-level variables (infection control indicators).

Results.

Two hundred two hospitals had at least 300 patients, for a total of 128,631 Patients. The overall prevalence of MRSA infection was 0.34% (95% confidence interval [CI], 0.29%-0.39%). The mean value for ICSHA was 7.8 L per 1,000 patient-days (median, 6.1 L per 1,000 patient-days; range, 0-33 L per 1,000 patient-days). The mean value for ICALIN was 92 of a possible 100 points (median, 94.5;range, 67-100). Multilevel analyses showed that ICALIN scores were associated with the prevalence of MRSA infection (odds ratio for a score change of 1 standard deviation, 0.80;95% CI, 0.69-0.93). We found no association between prevalence of MRSA infection and ICSHA. Other variables significantly associated with the prevalence of MRSA infection were sex, vascular or urinary catheter, previous surgery, and the McCabe score.

Conclusions.

We found a significant association between the prevalence of MRSA infection and ICALIN that suggested that a higher ICALIN score may be predictive of a lower prevalence of MRSA infection.

Type
Original Articles
Copyright
Copyright © The Society for Healthcare Epidemiology of America 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Lepoutre, A, Branger, B, Carreau, N, et al. Réseau d'alerte d'investigation et de surveillance des infections nosocomiales (RAISIN). Deuxième enquête nationale de prévalence des infections nosocomiales, France, 2001. Available at: http://www.invs.sante.fr/publications/2005/snmi/pdf/infections_noso_enquete.pdf. Accessed July 14, 2009.Google Scholar
2. Ministère de la Santé et des Solidarités. Programme national de lutte contre les infections nosocomiales 2005-2008. Available at: http://www.sante.gouv.fr/htm/actu/infect_nosocol81104/prog.pdf. Accessed July 14, 2009.Google Scholar
3.Astagneau, P, Costa, Y, Legrand, P, et al; Ministère de la Santé et des Solidarités et Comité technique national des infections nosocomiales. Maîtrise de la diffusion des bactéries multirésistantes aux antibiotiques. Paris: Ministère de l'Emploi et des Solidarités, 1999.Google Scholar
4.Fung, CH, Lim, YW, Mattke, S, et al.Systematic review: the evidence that publishing patient care performance data improves quality of care. Ann Intern Med 2008;148:111123.Google Scholar
5.McKibben, L, Horan, T, Tokars, JI, et al.Guidance on public reporting of healthcare-associated infections: recommendations of the Healthcare Infection Control Practices Advisory Committee. Am J Infect Control 2005;33:217226.Google Scholar
6.Institut de Veille Sanitaire. Recommandations pour la mise en place d'un tableau de bord des infections nosocomiales dans chaque établissement de soins. 2004. Available at: http://www.invs.sante.fr/publications/2004/tdb_infections_nosocomiales/index.html. Accessed July 14, 2009.Google Scholar
7. Ministère de la Santé et des Solidarités. Construction de l'indicateur ICSHA du tableau de bord des infections nosocomiales. 2006. Available at: http://www.sante.gouv.fr/htm/dossiers/nosoco/tab_bord/icsha/doc_pdf7fiche_sha.pdf. Accessed July 14, 2009.Google Scholar
8.Thiolet, JM, Lacavé, L, Jarno, P, et al.Prévalence des infections nosocomiales, France, 2006. BEH 2007;51:429432. Available at: http://www.invs.sante.fr/beh/2007/51_52/beh_51_52_2007.pdf. Accessed July 23, 2009.Google Scholar
9.DGS/DHOS. Tableau de bord des infections nosocomiales dans les établissements de santé. Available at: http://www.sante.gouv.fr/htm/dossi-ers/nosoco/tab_bord/accueil.htm. Accessed July 14, 2009.Google Scholar
10. Statistiques annuelles des Etablissements de santé. SAE-diffusion. Available at: http://www.sae-diffusion.sante.gouv.fr. Accessed July 14, 2009.Google Scholar
11.Boucher, HW, Corey, GR. Epidemiology of methicillin-resistant Staphylococcus aureus. Clin Infect Dis 2008;46(Suppl 5):S344S349.Google Scholar
12.The Hopital Propre II Study Group. Methicillin-resistant Staphylococcus aureus in French hospitals: a 2-month survey in 43 hospitals, 1995. Infect Control Hosp Epidemiol 1999;20:478486.Google Scholar
13.Leleu, G. Mesure du score de Mac Cabe et score de Kanaus. Modified 2004. Available at: http://www.srlf.org/pos/scores/score-mac-cabe.html. Accessed July 14, 2009.Google Scholar
14. Ministère de la Santé et des Solidarités. Démarche construction des indicateurs du tableau de bord des infections nosocomiales. 2003. Available at: http://www.sante.gouv.fr/htm/dossiers/nosoco/tab_bord/demarche.htm. Accessed July 14, 2009.Google Scholar
15.Raudenbush, SW, Bryk, AS. Hierarchical Linear Models: Applications and Data Analysis Methods. 2nd ed. London: Newbury Park, 2002.Google Scholar
16.Diez-Roux, AV. Multilevel analysis in public health research. Annu Rev Public Health 2000;21:171192.Google Scholar
17.Chavance, M. Modeling correlated data in epidemiology: mixed or marginal model? Rev Epidemiol Sante Publique 1999;47:535544.Google Scholar
18.Johnson, PD, Martin, R, Burrell, LJ, et al.Efficacy of an alcohol/chlor-hexidine hand hygiene program in a hospital with high rates of nosocomial methicillin-resistant Staphylococcus aureus (MRSA) infection. Med J Aust 2005;183:509514.Google Scholar
19.Buke, C, Armand-Lefevre, L, Lolom, I, et al.Epidemiology of multidrug-resistant bacteria in patients with long hospital stays. Infect Control Hosp Epidemiol 2007;28:12551260.Google Scholar
20.Sanchez-Paya, J, Galicia-Garcia, MD, Gracia-Rodriguez, RM, et al.Compliance with hand hygiene guidelines and determinants of compliance. Enferm Infecc Microbiol Clin 2007;25:369375.Google ScholarPubMed
21.Azanowsky, JM, Brun-Buisson, C, Carbonne, A, et al.Recent trends in antimicrobial resistance among Streptococcus pneumoniae and Staphylococcus aureus isolates: the French experience. Euro Surveill 2008;13:19035.Google Scholar
22.Leyland, AH, Goldstein, H. Multilevel Modelling of Health Statistics. Chichester, England: Wiley, 2001.Google Scholar
23.Diez Roux, AV. The study of group-level factors in epidemiology: rethinking variables, study designs, and analytical approaches. Epidemiol Rev 2004;26:104111.Google Scholar
24.Diez Roux, AV, Aiello, AE. Multilevel analysis of infectious diseases. J Infect Dis 2005;191(Suppl 1):S25S33.CrossRefGoogle ScholarPubMed
25.Muller, A, Mauny, F, Talon, D, et al.Effect of individual- and group-level antibiotic exposure on MRSA isolation: a multilevel analysis. JAntimicrob Chemother 2006;58:878881.Google Scholar
26.Merlo, J, Östergren, PO, Hagberg, O, et al.Diastolic blood pressure and area of residence: multilevel versus ecological analysis of social inequity. J Epidemiol Community Health 2001;55:791798.CrossRefGoogle ScholarPubMed
27.Moineddin, R, Matheson, FI, Glazier, RH. A simulation study of sample size for multilevel logistic regression models. BMC Med Res Methodol 2007;7:34.CrossRefGoogle ScholarPubMed
28.Ministère de la Santé et des Solidarités. Circulaire de mise en place des indicateurs du tableau de bord des infections nosocomiales. 2007. Available at: http://www.sante.gouv.fr/htm/dossiers/nosoco/tab_bord/documents/circulaire_231_130607.pdf. Accessed July 14, 2009.Google Scholar