Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Chang, Anthony C.
2020.
Intelligence-Based Medicine.
p.
67.
González del Castillo, Juan
Julián-Jiménez, Agustín
Gamazo-Del Rio, Julio Javier
García-Lamberechts, Eric Jorge
Llopis-Roca, Ferrán
Guardiola Tey, Josep María
Martínez-Ortiz de Zarate, Mikel
Navarro Bustos, Carmen
Piñera Salmerón, Pascual
Álvarez-Manzanares, Jesús
Ortega Romero, María del Mar
Ruiz Grinspan, Martin
García Gutiérrez, Susana
Martín-Sánchez, Francisco Javier
and
Candel González, Francisco Javier
2020.
A multidrug-resistant microorganism infection risk prediction model: development and validation in an emergency medicine population.
European Journal of Clinical Microbiology & Infectious Diseases,
Vol. 39,
Issue. 2,
p.
309.
Giacobbe, Daniele Roberto
Mora, Sara
Giacomini, Mauro
and
Bassetti, Matteo
2020.
Machine Learning and Multidrug-Resistant Gram-Negative Bacteria: An Interesting Combination for Current and Future Research.
Antibiotics,
Vol. 9,
Issue. 2,
p.
54.
Vock, Isabelle
Aguilar-Bultet, Lisandra
Egli, Adrian
Tamma, Pranita D.
and
Tschudin-Sutter, Sarah
2021.
Risk factors for colonization with multiple species of extended-spectrum beta-lactamase producing Enterobacterales: a case-case–control study.
Antimicrobial Resistance & Infection Control,
Vol. 10,
Issue. 1,
Madrid-Morales, Julieta
Sharma, Aditi
Reveles, Kelly
Velez-Mejia, Carolina
Hopkins, Teri
Yang, Linda
Walter, Elizabeth
and
Cadena, Jose
2021.
Validation of Available Extended-Spectrum-Beta-Lactamase Clinical Scoring Models in Predicting Drug Resistance in Patients with Enteric Gram-Negative Bacteremia Treated at South Texas Veterans Health Care System.
Antimicrobial Agents and Chemotherapy,
Vol. 65,
Issue. 6,
Karaba, Sara M.
Goodman, Katherine E.
Amoah, Joe
Cosgrove, Sara E.
and
Tamma, Pranita D.
2021.
StenoSCORE: Predicting Stenotrophomonas maltophilia Bloodstream Infections in the Hematologic Malignancy Population.
Antimicrobial Agents and Chemotherapy,
Vol. 65,
Issue. 8,
Herrera, Sabina
Bodro, Marta
and
Soriano, Alex
2021.
Predictors of multidrug resistant Pseudomonas aeruginosa involvement in bloodstream infections.
Current Opinion in Infectious Diseases,
Vol. 34,
Issue. 6,
p.
686.
He, Sheng
Leanse, Leon G.
and
Feng, Yanfang
2021.
Artificial intelligence and machine learning assisted drug delivery for effective treatment of infectious diseases.
Advanced Drug Delivery Reviews,
Vol. 178,
Issue. ,
p.
113922.
Elligsen, Marion
Pinto, Ruxandra
Leis, Jerome A
Walker, Sandra A N
Daneman, Nick
and
MacFadden, Derek R
2021.
Improving Decision Making in Empiric Antibiotic Selection (IDEAS) for Gram-negative Bacteremia: A Prospective Clinical Implementation Study.
Clinical Infectious Diseases,
Vol. 73,
Issue. 2,
p.
e417.
Elligsen, Marion
Pinto, Ruxandra
Leis, Jerome A
Walker, Sandra A N
MacFadden, Derek R
and
Daneman, Nick
2021.
Using Prior Culture Results to Improve Initial Empiric Antibiotic Prescribing: An Evaluation of a Simple Clinical Heuristic.
Clinical Infectious Diseases,
Vol. 72,
Issue. 10,
p.
e630.
Scott, Ian A.
2021.
Demystifying machine learning: a primer for physicians.
Internal Medicine Journal,
Vol. 51,
Issue. 9,
p.
1388.
Anahtar, Melis N.
Yang, Jason H.
Kanjilal, Sanjat
and
McAdam, Alexander J.
2021.
Applications of Machine Learning to the Problem of Antimicrobial Resistance: an Emerging Model for Translational Research.
Journal of Clinical Microbiology,
Vol. 59,
Issue. 7,
Garcia-Vidal, Carolina
Stern, Anat
and
Gudiol, Carlota
2021.
Multidrug-resistant, gram-negative infections in high-risk haematologic patients: an update on epidemiology, diagnosis and treatment.
Current Opinion in Infectious Diseases,
Vol. 34,
Issue. 4,
p.
314.
Liang, Qiqiang
Zhao, Qinyu
Xu, Xin
Zhou, Yu
and
Huang, Man
2022.
Early prediction of carbapenem-resistant Gram-negative bacterial carriage in intensive care units using machine learning.
Journal of Global Antimicrobial Resistance,
Vol. 29,
Issue. ,
p.
225.
De Corte, T.
Van Hoecke, S.
and
De Waele, J.
2022.
Annual Update in Intensive Care and Emergency Medicine 2022.
p.
369.
Tang, Rui
Luo, Rui
Tang, Shiwei
Song, Haoxin
and
Chen, Xiujuan
2022.
Machine learning in predicting antimicrobial resistance: a systematic review and meta-analysis.
International Journal of Antimicrobial Agents,
Vol. 60,
Issue. 5-6,
p.
106684.
De Corte, Thomas
Van Hoecke, Sofie
and
De Waele, Jan
2022.
Artificial Intelligence in Infection Management in the ICU.
Critical Care,
Vol. 26,
Issue. 1,
Çaǧlayan, Çaǧlar
Barnes, Sean L.
Pineles, Lisa L.
Harris, Anthony D.
and
Klein, Eili Y.
2022.
A Data-Driven Framework for Identifying Intensive Care Unit Admissions Colonized With Multidrug-Resistant Organisms.
Frontiers in Public Health,
Vol. 10,
Issue. ,
Sakagianni, Aikaterini
Koufopoulou, Christina
Feretzakis, Georgios
Kalles, Dimitris
Verykios, Vassilios S.
Myrianthefs, Pavlos
and
Fildisis, Georgios
2023.
Using Machine Learning to Predict Antimicrobial Resistance―A Literature Review.
Antibiotics,
Vol. 12,
Issue. 3,
p.
452.
Timbrook, Tristan T.
and
Fowler, McKenna J.
2023.
Predicting Extended-Spectrum Beta-Lactamase and Carbapenem Resistance in Enterobacteriaceae Bacteremia: A Diagnostic Model Systematic Review and Meta-Analysis.
Antibiotics,
Vol. 12,
Issue. 9,
p.
1452.