Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-03T08:18:34.741Z Has data issue: false hasContentIssue false

Longitudinal rates, risk factors, and costs of superficial and deep incisional surgical-site infection (SSI) after primary and revision total knee arthroplasty: A US retrospective claims database analysis

Published online by Cambridge University Press:  02 February 2023

Charles E. Edmiston Jr*
Affiliation:
Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
Maureen Spencer
Affiliation:
Infection Prevention Consultants, Boston, Massachusetts, United States
Najmuddin J. Gunja
Affiliation:
MedTech Health Economics and Market Access, Johnson & Johnson, Markham, Ontario, Canada
Chantal E. Holy
Affiliation:
MedTech Epidemiology, Real-World Data Sciences, Johnson & Johnson, New Brunswick, New Jersey, United States
Jill W. Ruppenkamp
Affiliation:
MedTech Epidemiology, Real-World Data Sciences, Johnson & Johnson, New Brunswick, New Jersey, United States
David J. Leaper
Affiliation:
Newcastle University, Newcastle Upon Tyne, United Kingdom University of Huddersfield, Queensgate, United Kingdom
*
Author for correspondence: Charles E. Edmiston, Jr, E-mail: [email protected]

Abstract

Objective:

We evaluated longitudinal rates, risk factors, and costs of superficial and deep incisional surgical-site infection (SSI) 6 months after primary total knee arthroplasty (pTKA) and revision total knee arthroplasty (rTKA).

Methods:

Patients were identified from January 1, 2016 through March 31, 2018, in the IBM MarketScan administrative claims databases. Kaplan-Meier survival curves evaluated time to SSI over 6 months. Cox proportional hazard models evaluated SSI risk factors. Generalized linear models estimated SSI costs up to 12 months.

Results:

Of the 26,097 pTKA patients analyzed (mean age, 61.6 years; SD, 9.2; 61.4% female; 60.4% commercial insurance), 0.65% (95% CI, 0.56%–0.75%) presented with a deep incisional SSI and 0.82% (95% CI, 0.71%–0.93%) with a superficial incisional SSI. Also, 3,663 patients who had rTKA (mean age, 60.9 years; SD, 10.1; 60.6% female; 53.0% commercial insurance), 10.44% (95% CI, 9.36%–11.51%) presented with a deep incisional SSI and 2.60% (95% CI, 2.07%–3.13%) presented with a superficial incisional SSI. Infections were associated with male sex and multiple patient comorbidities including chronic pulmonary disease, pulmonary circulatory disorders, fluid and electrolyte disorders, malnutrition, drug abuse, and depression. Adjusted average all-cause incremental commercial cost ranged from $14,298 to $29,176 and from $41,381 to 59,491 for superficial and deep incisional SSI, respectively.

Conclusions:

SSI occurred most frequently following rTKA and among patients with pulmonary comorbidities and depression. The incremental costs associated with SSI following TKA were substantial.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Society for Healthcare Epidemiology of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Steiner, C, Andrews, R, Barrett, M, Weiss, A. HCUP projections: mobility/orthopedic procedures, 2003–2012. HCUP projections report no. 2012-03. US Agency for Healthcare Research and Quality website. http://hcup-us.ahrq.gov/reports/projections/2012-03.pdf. Published 2012. Accessed December 8, 2022.Google Scholar
Kremers, HM, Larson, DR, Crowson, CS, et al. Prevalence of total hip and knee replacement in the United States. J Bone Joint Surg Am 2015;97:13861397.10.2106/JBJS.N.01141CrossRefGoogle Scholar
Zardi, EM, Franceschi, F. Prosthetic joint infection: a relevant public health issue. J Infect Public Health 2020;13:18881891.10.1016/j.jiph.2020.09.006CrossRefGoogle Scholar
Kurtz, S, Ong, K, Lau, E, Mowat, F, Halpern, M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am 2007;89:780785.10.2106/00004623-200704000-00012CrossRefGoogle Scholar
Rasouli, MR, Restrepo, C, Maltenfort, MG, Purtill, JJ, Parvizi, J. Risk factors for surgical site infection following total joint arthroplasty. JBJS 2014;96:e158.10.2106/JBJS.M.01363CrossRefGoogle Scholar
Mahomed, NN, Barrett, J, Katz, JN, Baron, JA, Wright, J, Losina, E. Epidemiology of total knee replacement in the United States Medicare population. J Bone Joint Surg Am 2005;87:12221228.Google Scholar
Teo, BJX, Yeo, W, Chong, HC, Tan, AHC. Surgical site infection after primary total knee arthroplasty is associated with a longer duration of surgery. J Orthop Surg (Hong Kong) 2018;26:2309499018785647.CrossRefGoogle ScholarPubMed
Edmiston, CE Jr, Chitnis, AS, Lerner, J, Folly, E, Holy, CE, Leaper, D. Impact of patient comorbidities on surgical site infection within 90 days of primary and revision joint (hip and knee) replacement. Am J Infect Control 2019;47:12251232.10.1016/j.ajic.2019.03.030CrossRefGoogle Scholar
Cook, TM, Piatt, CJ, Barnes, S, Edmiston, CE Jr The impact of supplemental intraoperative air decontamination on the outcome of total joint arthroplasty: a pilot analysis. J Arthroplasty 2019;34:549553.CrossRefGoogle ScholarPubMed
Ahmed, SS, Haddad, FS. Prosthetic joint infection. Bone Joint Res 2019;8:570572.CrossRefGoogle ScholarPubMed
Whitehouse, JD, Friedman, ND, Kirkland, KB, Richardson, WJ, Sexton, DJ. The impact of surgical-site infections following orthopedic surgery at a community hospital and a university hospital: adverse quality of life, excess length of stay, and extra cost. Infect Control Hosp Epidemiol 2002;23:183189.10.1086/502033CrossRefGoogle Scholar
Li, GQ, Guo, FF, Ou, Y, Dong, GW, Zhou, W. Epidemiology and outcomes of surgical site infections following orthopedic surgery. Am J Infect Control 2013;41:12681271.10.1016/j.ajic.2013.03.305CrossRefGoogle Scholar
Edmiston, CE Jr, Leaper, DJ. Prevention of orthopedic prosthetic infections using evidence-based surgical site infection care bundles: a narrative review. Surg Infect (Larchmt) 2022;23:645655.CrossRefGoogle ScholarPubMed
Benchimol, EI, Smeeth, L, Guttmann, A, et al. The REporting of studies Conducted using Observational Routinely-collected health Data (RECORD) statement. PLoS Med 2015;12:e1001885.10.1371/journal.pmed.1001885CrossRefGoogle Scholar
Elixhauser, A, Steiner, C, Harris, DR, Coffey, RM. Comorbidity measures for use with administrative data. Med Care 1998;36:827.10.1097/00005650-199801000-00004CrossRefGoogle Scholar
Menendez, ME, Neuhaus, V, van Dijk, CN, Ring, D. The Elixhauser comorbidity method outperforms the Charlson index in predicting inpatient death after orthopaedic surgery. Clin Orthop Relat Res 2014;472:28782886.CrossRefGoogle ScholarPubMed
Consumer Price Index (CPI). US Bureau of Labor Statistics website. www.bls.gov/cpi/. Published 2022. Accessed December 8, 2022.Google Scholar
Christensen, AMM, Dowler, K, Doron, S. Surgical site infection metrics: dissecting the differences between the National Health and Safety Network and the National Surgical Quality Improvement Program. Antimicrob Steward Healthc Epidemiol 2021;1:e16.CrossRefGoogle ScholarPubMed
Lai, K, Bohm, ER, Burnell, C, Hedden, DR. Presence of medical comorbidities in patients with infected primary hip or knee arthroplasties. J Arthroplasty 2007;22:651656.10.1016/j.arth.2006.09.002CrossRefGoogle Scholar
Offner, PJ, Moore, EE, Biffl, WL. Male gender is a risk factor for major infections after surgery. Arch Surg 1999;134:935938.CrossRefGoogle Scholar
Wu, C, Qu, X, Liu, F, Li, H, Mao, Y, Zhu, Z. Risk factors for periprosthetic joint infection after total hip arthroplasty and total knee arthroplasty in Chinese patients. PloS One 2014;9:e95300.10.1371/journal.pone.0095300CrossRefGoogle Scholar
Li, T, Zhang, H, Chan, PK, Fung, WC, Fu, H, Chiu, KY. Risk factors associated with surgical site infections following joint replacement surgery: a narrative review. Arthroplasty 2022;4:11.10.1186/s42836-022-00113-yCrossRefGoogle Scholar
Belda, FJ, Aguilera, L, Garcia de la Asuncion, J, et al. Supplemental perioperative oxygen and the risk of surgical wound infection: a randomized controlled trial. JAMA 2005;294:20352042.10.1001/jama.294.16.2035CrossRefGoogle Scholar
Goswami, K, Stevenson, KL, Parvizi, J. Intraoperative and postoperative infection prevention. J Arthroplasty 2020;35 suppl 3:S2S8.10.1016/j.arth.2019.10.061CrossRefGoogle Scholar
Olsen, MA, Ball, KE, Nickel, KB, Wallace, AE, Fraser, VJ. Validation of ICD-9-CM diagnosis codes for surgical site infection and noninfectious wound complications after mastectomy. Infect Control Hosp Epidemiol 2017;38:334339.10.1017/ice.2016.271CrossRefGoogle Scholar
Calderwood, MS, Huang, SS, Keller, V, Bruce, CB, Kazerouni, NN, Janssen, L. Variable case detection and many unreported cases of surgical-site infection following colon surgery and abdominal hysterectomy in a statewide validation. Infect Control Hosp Epidemiol 2017;38:10911097.CrossRefGoogle Scholar
Miner, AL, Sands, KE, Yokoe, DS, Freedman, J, Thompson, K, Livingston, JM, Platt, R. Enhanced identification of postoperative infections among outpatients. Emerg Infect Dis 2004;10:19311937.CrossRefGoogle ScholarPubMed
van der Net, JB, Janssens, ACJW, Eijkemans, MJC, Kastelein, JJP, Sijbrands, EJG, Steyerberg, EW. Cox proportional hazards models have more statistical power than logistic regression models in cross-sectional genetic association studies. Eur J Human Genet 2008;16:11111116.CrossRefGoogle ScholarPubMed
Phillips, JE, Crane, TP, Noy, M, Elliott, TS, Grimer, RJ. The incidence of deep prosthetic infections in a specialist orthopaedic hospital: a 15-year prospective survey. J Bone Joint Surg Br 2006;88:943948.10.1302/0301-620X.88B7.17150CrossRefGoogle Scholar
Supplementary material: File

Edmiston et al. supplementary material

Edmiston et al. supplementary material

Download Edmiston et al. supplementary material(File)
File 96.4 KB