Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T18:15:38.191Z Has data issue: false hasContentIssue false

Extending outbreak investigation with machine learning and graph theory: Benefits of new tools with application to a nosocomial outbreak of a multidrug-resistant organism

Published online by Cambridge University Press:  16 September 2022

Andrew Atkinson*
Affiliation:
Department of Infectious Diseases, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
Benjamin Ellenberger
Affiliation:
Insel Data Science Center, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
Vanja Piezzi
Affiliation:
Department of Infectious Diseases, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
Tanja Kaspar
Affiliation:
Department of Infectious Diseases, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
Luisa Salazar-Vizcaya
Affiliation:
Department of Infectious Diseases, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
Olga Endrich
Affiliation:
Medical Directorate, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
Alexander B. Leichtle
Affiliation:
Insel Data Science Center, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland University Institute of Clinical Chemistry, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
Jonas Marschall
Affiliation:
Department of Infectious Diseases, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland Division of Infectious Diseases, Washington University School of Medicine, St Louis, Missouri, United States
*
Author for correspondence: Andrew Atkinson, E-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Objective:

From January 1, 2018, until July 31, 2020, our hospital network experienced an outbreak of vancomycin-resistant enterococci (VRE). The goal of our study was to improve existing processes by applying machine-learning and graph-theoretical methods to a nosocomial outbreak investigation.

Methods:

We assembled medical records generated during the first 2 years of the outbreak period (January 2018 through December 2019). We identified risk factors for VRE colonization using standard statistical methods, and we extended these with a decision-tree machine-learning approach. We then elicited possible transmission pathways by detecting commonalities between VRE cases using a graph theoretical network analysis approach.

Results:

We compared 560 VRE patients to 86,684 controls. Logistic models revealed predictors of VRE colonization as age (aOR, 1.4 (per 10 years), with 95% confidence interval [CI], 1.3–1.5; P < .001), ICU admission during stay (aOR, 1.5; 95% CI, 1.2–1.9; P < .001), Charlson comorbidity score (aOR, 1.1; 95% CI, 1.1–1.2; P < .001), the number of different prescribed antibiotics (aOR, 1.6; 95% CI, 1.5–1.7; P < .001), and the number of rooms the patient stayed in during their hospitalization(s) (aOR, 1.1; 95% CI, 1.1–1.2; P < .001). The decision-tree machine-learning method confirmed these findings. Graph network analysis established 3 main pathways by which the VRE cases were connected: healthcare personnel, medical devices, and patient rooms.

Conclusions:

We identified risk factors for being a VRE carrier, along with 3 important links with VRE (healthcare personnel, medical devices, patient rooms). Data science is likely to provide a better understanding of outbreaks, but interpretations require data maturity, and potential confounding factors must be considered.

Type
Original Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Society for Healthcare Epidemiology of America

Electronic medical records contain information relevant for outbreak investigations; consequently, by integrating the relevant data sources, we can potentially inform and improve patient screening and isolation strategies. However, this integration necessarily leads to large quantities of data, which can be difficult to analyze using standard statistical techniques. Machine-learning or “artificial intelligence” methods comprise a toolbox of approaches that have become popular for analyzing such “big data”. Reference Bi, Goodman, Kaminsky and Lessler1,Reference Wiens and Shenoy2 To date in the field of hospital epidemiology, machine-learning techniques have predominantly been used to extend existing statistical methods to provide deeper insights in the analysis of infections, infection management and outbreak detection (eg, Roth et al, Reference Roth, Battegay, Juchler, Vogt and Widmer3 Luz et al, Reference Luz, Vollmer, Decruyenaere, Nijsten, Glasner and Sinha4 and Leclère et al Reference Leclère, Buckeridge, Boelle, Astagneau and Lepelletier5 ). Furthermore, methods based on graph theory (hereafter “network graph methods”) have recently been used to identify, for example, superspreaders in community-based outbreaks. Reference Fu, Huang and Sun6,Reference Duron7

Here, we applied a network graph approach to the largest documented outbreak of a multidrug-resistant organism (MDRO) in Switzerland, which occurred in 2018–2019 in our hospital group and affected >560 patients. Reference Wassilew, Seth-Smith and Rolli8 This particular MDRO, vancomycin-resistant Enterococcus faecium (VRE) of the sequence type 796 (ST796), predominantly colonizes the gastrointestinal tract, and is known for rapid intrahospital and interhospital spread. Infections due to VRE are associated with increased mortality, morbidity and higher hospital costs. Reference Chiang, Perencevich and Nair9,Reference Prematunge, MacDougall and Johnstone10 Comprehensive literature has described the risk factors for VRE colonization including (among others) length of hospital stay, duration and type of antibiotic use, proximity to a colonized or infected patient, contact with environmental contamination, and immunosuppression or hematologic malignancy. Reference Monteserin and Larson11Reference Correa-Martinez, Tönnies, Froböse, Mellmann and Kampmeier15 The apparent complexity and multifactorial nature of this outbreak provided motivation for using machine-learning and graph-theoretical methods to attempt to untangle and better understand these complex interactions.

Active surveillance screening is a key measure in identifying asymptomatic VRE carriage, with patient contact isolation being the standard precaution to limit further transmission. Reference Cattoir and Leclercq16Reference Vehreschild, Haverkamp, Biehl, Lemmen and Faetkenheuer19 Therefore, during this outbreak, VRE-positive patients (colonized or infected) were isolated, and a proactive “contact tracing” process was introduced. Although such contact tracing is relatively straightforward to implement, there was room for improvement and optimization of the process because transmission is not necessarily dependent only on rather limited definitions of geographical and organizational proximity.

With this study, we sought to address the following key questions:

  • What are the risk factors for VRE colonization?

  • Which patients should be screened?

  • What are the “hot spots” in terms of devices, rooms and employees where transmission may have occurred?

  • What is the potential benefit of a contact screening approach based on the network graph approach, compared to the traditional proximity-based contact screening?

To ease readability, throughout the document we have noted the use of standard statistical approaches versus new machine-learning–type techniques.

Methods

The outbreak occurred in a 900-bed, tertiary-care, university hospital in Bern, Switzerland. The hospital sees ∼60,000 admissions and 380,000 patient days per year, with most medical disciplines represented.

The outbreak was originally detected in January 2018 following 2 cases of VRE bloodstream infections on the oncology ward, and this consequently led to an outbreak management protocol being introduced based on international guidelines. Briefly, VRE–positive (ie, colonized or infected) patients were isolated, and a proactive proximity-based contact-tracing process was introduced, whereby people were screened if they were hospitalized in the same room and ward (and therefore potentially exposed) as a newly detected VRE-positive patient in the prior 7 days. In addition, cleaning was intensified with measures such as daily disinfection and UV light cleaning procedures (among others). An upcoming publication describes the outbreak and procedures in more detail. Reference Piezzi, Wassilew and Atkinson20

In addition, we assembled diverse data from electronic medical records generated during the first 2 years of the outbreak (January 1, 2018–December 31, 2019), covering different aspects of medical care (Table 1). For comparisons, we labeled all patients (including children) with VRE acquisition during the outbreak period as VRE-positive (cases), and all other patients, whether tested or not, were assumed to be VRE negative (controls). Notably, a sampling and subtyping performed in 2018 revealed that 91.7% of the isolates were identified as sequence type 796; the analysis presented here pertains to all subtypes.

Table 1. Characteristics of Those With (Case) and Without (Control) VRE Infection (N = 87,244)

a “Employee contacts” means recorded interactions with nursing employees only.

Summary statistics of cases and controls were presented as number and percentage for categorical, and median and interquartile ranges for continuous, variables. Group differences were investigated using the χ2 test (or variants thereof) for categorical variables and the Mann-Whitney-Wilcoxon test for continuous variables.

Standard approach

We identified risk factors for VRE colonization by fitting uni- and multivariable logistic regression models with dependent variable colonization (0 = no, 1 = yes), and independent variables those available and integrated in the project specific data warehouse (ie, those in Table 1). The most parsimonious model was found by forward selection then backward deletion using a P value of >.10 as the inclusion criterion. These analyses were performed in R version 3.5 or newer software 21 using base functions and the following packages: data.table, ggplot2, tableone, and survey.

Decision tree approach

In a second step, a machine-learning “decision tree” approach was used to identify a VRE positive individual. In decision-tree learning, a tree-like model of decisions and subsequent outcomes is chosen, which models the path from observations to conclusions. The branches of the tree represent criteria on the observations (eg, age <30 years), and the leaves represent the class labels (eg, those colonized or infected). The learning algorithm builds such a tree by choosing variables, and it learns criteria on these to split the data set most appropriately to the dependent variable, thus revealing the variables that are most predictive, as well as the tree that generates the predicted result. For our purposes, the classification tree was built with the same independent and dependent variables as the logistic regression (ie, those in Table 1).

This approach served to validate initial hypotheses of risk factors derived from the logistic regression models and provided an interpretable decision tree with decision thresholds. To mitigate the strong imbalance between cases and controls in the data set, we applied a minority class oversampling approach resulting in equal numbers of positive and negative samples. The analysis was performed using Python version 3.7 software Reference Van Rossum and Drake22 with the following packages: data processing (pyodbc, numpy, pandas, scipy), machine learning (scikit-learn), and visualization (matplotlib).

Network graph approach

In a third step, a network graph model involving the identified risk factors was developed. We identified potential transmission hotspots: healthcare employees with frequent VRE patient contact, rooms in which VRE patients were present, and medical devices used in conjunction with diagnosing and treating these patients. Interactions documented by healthcare workers were limited to those between patients and nursing employees because physician interactions are not documented at this granularity for in-patient care (which is a limitation of the data available to us). In terms of medical devices, only interactions tracked in the information technology systems were included in the analysis, and this limited the scope of this study to larger, often nonportable devices. Rooms in which patients stayed at any point during their hospitalization were included in the analysis, even if the stay was <24 hours.

The network graph analysis used eigenvector centrality to generate a daily “hotspot list”, which was sent to the relevant organizational unit involved in disinfecting rooms and medical devices. Employees remained as important links in the analysis, but hardly any employees underwent VRE screening by occupational health as it was deemed voluntary at the time.

An example of a small section of the network graph is shown in Figure 1. For background information on this approach, please refer to the Supplementary Material (online).

Fig. 1. Example visualization shows collections of rooms in the geospatial locations in orange, patients in turquoise (colonized patients with red halo), devices in yellow, and employees in purple. In the left panel, it is possible to select a subset of all patients. In the bottom row, the user can select a subset of the timeline of VRE screenings.

This analysis was performed using Python version 3.7 software Reference Van Rossum and Drake22 with the following packages: data processing (pyodbc, numpy, pandas, scipy), graph theory (networkx), machine learning (scikit-learn, pytorch), and interactive visualization (matplotlib, seaborn, bokeh, Holoviz, Holoviews).

Model validation

The outbreak occurred in many parts of the hospital, and the analysis was performed on data from the whole hospital. However, for the model validation process, we focused on the oncology ward because this ward performed screenings of all patients every week, whereas other wards did not or performed them only sporadically. This meant that for the oncology ward, we had a “ground truth” with which to compare our model predictions; that is, for each week we were able to compare the predicted VRE positive cases from the model to the observed cases.

We compared the current gold standard “proximity-based screening” and therefore nonprioritized approach, with the new prioritized list for screening patients derived from the network graph method. First, the “screening efficiency” was calculated; this represents the percentage fewer screenings compared to the gold standard. Second, the “screening benefit” was determined as the additional patients we could potentially have detected compared to the gold standard (refer to the Supplementary Material online for details).

Ethical approval

The Cantonal Ethics Committee (Bern, Project ID no. 2020-00173) approved this study.

Results

We compared 560 VRE patients to 86,684 controls from January 1, 2018, to December 31, 2019 (Table 1). Compared to the general hospital population during this period, VRE-positive patients were predominantly male (61.8% vs 50.8%), had an older median age (73 vs 58 years), had surgery during their hospitalization (67.3% vs 57.2%), and were more likely to have been in the ICU during their hospitalization (34.5% vs 8.0%).

Standard approach

Independent predictors of VRE colonization from the fitted multivariable logistic regression model were age (adjusted odds ratio [aOR], 1.4 (per 10 years); 95% confidence interval [CI], 1.3–1.5; P < .001), ICU admission during any hospitalization (aOR, 1.5; 95% CI, 1.2–1.9; P < .001), Charlson comorbidity score (aOR, 1.1; 95% CI, 1.1–1.2; P < .001), number of different prescribed antibiotics (aOR, 1.6; 95% CI, 1.5–1.7; P < .001) and the number of rooms the patient stayed in during the study period (aOR, 1.1; 95% CI, 1.1–1.2; P < .001), which is a marker for potential multiple exposures to environments and also severity of illness (Table 2 and Fig. 2). Number of hospitalizations, number of employee contacts, and number of devices employed for care were also significant predictors in univariable models, but these were collinear with the “ICU” indicator and “number of rooms” variables in multivariable adjusted models.

Table 2. Estimated Risk Factors for VRE Infection From the Fitted Logistic Regression Model

Note. Ref, reference; NS, not significant at the 5% level; NE, not estimated since the variable is collinear (no. of surgeries with the ICU indicator, no. of rooms with hospitalizations, no. of employees and devices with no. of rooms).

Fig. 2. Forest plot of risk factors for VRE acquisition from the adjusted multivariable logistic regression model.

Decision tree approach

Many of the risk factors identified in the logistic regression analysis are already well established in the literature. However, the presence of complex interactions between variables exhibited by the multiple collinearities in the fitted statistical models motivated a more in-depth investigation using machine learning methods. Decision-tree–based machine-learning methods (with a maximum depth of 6 levels) confirmed the findings from the logistic regression modelling, with the number of antibiotics (importance, 0.21), Charlson score (importance, 0.19), and number of rooms stayed in (importance, 0.15) being the 3 most important patient-associated characteristics (Table 3). The “importance” is a metric defining the rank of this covariate in splitting the data set: the higher the importance, the earlier this covariate is used in the branching process. As an additional result, the criteria of the decision tree provide proper thresholds that split the data appropriately. Furthermore, the analysis allowed insights that were not apparent from the logistic regression; for example, those patients receiving antibiotics and those aged >55 years were at higher risk for colonization (Supplementary Fig. S3 online).

Table 3. Estimated Features From Decision-Tree Analysis

Note. ICU, intensive care unit.

Network graph approach

The subsequent complex network analysis established 3 possible pathways by which the 560 VRE cases are connected (although not necessarily in a causal relationship): healthcare personnel, medical devices, and patient rooms. A sample “hot spot list” for a particular day is shown in Table 4; this ordered list of medical devices, healthcare personnel, and patient rooms has been sorted in the order of the likeliness of being colonized with VRE. Depending on the situational environment, appropriate actions can be defined regarding how to isolate patients and clean the devices and rooms more frequently and/or thoroughly, or potentially also to screen the respective personnel (although the latter was not implemented in this study).

Table 4. Example Hotspot List of Rooms, Devices, and Employees a

Note. EKG, electrocardiogram.

a This shows that the electrocardiogram service and the examination room ZZ have many interactions, and thus could likely serve as carriers for transmission.

Screening efficiency and benefit

In terms of model validation, the screening efficiency was estimated to result in 40.0% fewer screenings compared to the current gold standard (95% CI, 17.3–54.6). With the new screening approach, we identified 102 (95% CI, 66–138) positive patients who were missed from the proximity based screening process and who had an equal or higher centrality as the lowest-ranked positive patient.

Discussion

We originally set out to address a number of key questions with respect to the outbreak and its investigation. We now address each of these in turn.

What are the risk factors for VRE colonization?

Using both standard statistical methods and machine learning, we identified risk factors for VRE colonization in line with those already published in the literature. Patient age, underlying diseases and severity of illness, prolonged hospitalization, surgery, and exposure to antimicrobial drugs were important factors. Reference Hur, Yin, Jin and Lee23Reference Tacconelli, Karchmer, Yokoe and D’Agata25 Using 2 approaches confirming essentially the same results might be considered an inefficient use of statistical resources, but we prefer to view the 2 approaches as complementary, providing a slightly different perspective to the analysis. Although this was ultimately not particularly beneficial here, this will not always be the case.

Which patients should be screened?

Using a complex network graph analysis, we were able to further investigate 3 main pathways by which the VRE cases are connected: healthcare personnel, medical devices, and patient rooms. Interestingly, the importance of the number of rooms a patient stayed in and patient device interactions reflects recent work by Weterings et al Reference Weterings, van Oosten and Nieuwkoop26 and Gouliouris et al, Reference Gouliouris, Coll and Ludden27 which identified environmental contamination (and cleaning) as important factors in VRE outbreaks.

Using a network-graph approach to identify super-spreaders is not a new concept Reference Zhang, Wang and Zhang28,Reference Maji, Dutta, Curaldo Malta and Sen29 ; to date, however, there have been few applications using medical data, and, to our knowledge, these approaches have not been applied to nosocomial outbreaks. Our centrality-based screening is theoretically related to that of Klemm et al, Reference Klemm, Serrano, Eguiluz and San Miguel30 which suggests that the dynamic influence of a node in the classical susceptible–infected–recovered (SIR) transmission model can be estimated using eigenvector centrality.

What are the “hot spots” in terms of devices, rooms and employees where transmission may have occurred?

The analysis identified probable “hot spots” based on the hospital system’s human and nonhuman connections. This yielded prioritized lists of rooms and devices that might require special measures for outbreak control.

What is the potential benefit of a contact screening approach based on the network-graph approach, compared to the traditional proximity-based contact screening?

We proposed potential approaches for estimating the screening efficiency and the benefits of a more focused screening approach. These could certainly be improved, and we would recommend investing adequate time in defining appropriate metrics at the project initiation stage.

In more general terms, the network-graph analysis builds on the results from the logistic regression and decision-tree methods by identifying specific patients to be screened and rooms and devices to be cleaned.

Although the network-graph method was generally successful, the lack of a fully integrated data warehouse was a considerable barrier to the speed of implementation. For example, the time and resource management system did not include information on physicians and other key personnel within the hospital, so “employee” interactions were limited to those performed by nursing healthcare professionals. This represents an example of the main (financial and otherwise) cost of implementing such an approach: an important prerequisite for fast implementation (and therefore actionable results) is the availability of a hospital-wide, fully integrated, data warehouse (refer to the “blueprint” in the Appendix online). The most time-consuming and resource-intensive part of the project was the data source integration (Appendix, step 2) and operationalization (step 7), the necessary effort for which surprised the research team (Supplementary Fig. S2 online). The idea to pursue “machine-learning” methods is currently popular, but this can often lead to an analysis-driven approach. With this in mind, and given that, at least anecdotally, “85% of data science projects fail,” Reference Walker31 one of the most important success factors was to have a clear project mandate with metrics for success prior to starting the project.

This study had several limitations. Our study was monocentric, and it could have been improved by validating against data from another hospital. Despite the limitations, even our incomplete picture provides additional valuable insights regarding specific known interactions with VRE-positive patients in the greater network displayed in our research.

In summary, we implemented a new approach to reduce unnecessary screening. The method provides the basis for a smart contact-tracing system for the next outbreak, independent of pathogen, and potentially also for data-driven outbreak monitoring. We calculated the benefits of the new method compared to the existing contact tracing. The differential can be understood as an “added value” in terms of the yield of screening, or analogously, the cost–benefit of “avoided” screening.

Finally, data science provides a better understanding of outbreaks, but interpretations should include consideration of data source maturity, the scope of included sources, and potential confounding factors.

Supplementary material

To view supplementary material for this article, please visit https://doi.org/10.1017/ice.2022.66

Acknowledgments

We thank T. Hossman of Sqooba (now Open Systems), S. Zahnd, and S. Herbel for numerous discussions and contributions in the operational phase of the project.

Financial support

This work was funded from the Swiss National Science Foundation Spark grant number CRSK-3_190977 (PI, A.A.). A.A. is also employed at the University Children’s Hospital in Basel, Switzerland.

Conflicts of interest

All authors report no conflicts of interest relevant to this article.

Footnotes

a

Authors of equal contribution.

PREVIOUS PRESENTATION. Parts of these results were presented at the IDWeek conference in Washington, DC, on October 2–6, 2019.

References

Bi, Q, Goodman, KE, Kaminsky, J, Lessler, J. What is machine learning? A primer for the epidemiologist. Am J Epidemiol 2019;188:22222239.Google ScholarPubMed
Wiens, J, Shenoy, ES. Machine learning for health care: on the verge of a major shift in healthcare epidemiology. Clin Infect Dis 2018;66:149153.CrossRefGoogle Scholar
Roth, JA, Battegay, M, Juchler, F, Vogt, JE, Widmer, AF. Introduction to machine learning in digital healthcare epidemiology. Infect Control Hosp Epidemiol 2018;39:14571462.CrossRefGoogle ScholarPubMed
Luz, CF, Vollmer, M, Decruyenaere, J, Nijsten, MW, Glasner, C, Sinha, B. Machine learning in infection management using routine electronic health records: tools, techniques, and reporting of future technologies. Clin Microbiol Infect 2020;26:12911299.CrossRefGoogle ScholarPubMed
Leclère, B, Buckeridge, DL, Boelle, P-Y, Astagneau, P, Lepelletier, D. Automated detection of hospital outbreaks: a systematic review of methods. PLoS One 2017.CrossRefGoogle ScholarPubMed
Fu, y-H, Huang, C-Y, Sun, C-T. Identifying super-spreader nodes in complex networks. Math Problems Engineer 2015. doi: 10.1155/2015/675713.CrossRefGoogle Scholar
Duron, C. Heatmap centrality: a new measure to identify super-spreader nodes in scale-free networks. Plos One 2020;7:e0235690.CrossRefGoogle Scholar
Wassilew, N, Seth-Smith, HMB, Rolli, E, et al. Outbreak of vancomycin-resistant Enterococcus faecium clone ST796, Switzerland, December 2017 to April 2018. Eurosurveillance 2018;23 no. 29.CrossRefGoogle ScholarPubMed
Chiang, HY, Perencevich, EN, Nair, R, et al. Incidence and outcomes associated with infections caused by vancomycin-resistant enterococci in the United States: systematic literature review and meta-analysis. Infect Control Hosp Epidemiol 2017;38:203215.CrossRefGoogle ScholarPubMed
Prematunge, C, MacDougall, C, Johnstone, J, et al. VRE and VSE bacteremia outcomes in the era of effective VRE therapy: a systematic review and meta-analysis. Infect Control Hosp Epidemiol 2016;37:2635.CrossRefGoogle ScholarPubMed
Monteserin, N, Larson, E. Temporal trends and risk factors for healthcare-associated vancomycin-resistant enterococci in adults. J Hosp Infect 2016;94:236241.CrossRefGoogle ScholarPubMed
Suleyman, G, Alangaden, G, Bardossy, AC. The role of environmental contamination in the transmission of nosocomial pathogens and healthcare-associated infections. Curr Infect Dis Rep 2018;20:12.CrossRefGoogle ScholarPubMed
Zhou, MJ, Li, J, Salmasian, H, Zachariah, P, Yang, YX, Freedberg, DE. The local hospital milieu and healthcare-associated vancomycin-resistant Enterococcus acquisition. J Hosp Infect 2019;101:6975.CrossRefGoogle ScholarPubMed
Correa-Martinez, CL, Stollenwerk, VB, Kossow, A, Schaumberg, F, Mellmann, A, Kampmeier, S. Risk factors for long-term vancomycin-resistant enterococci persistance - a prospective longitudinal study. Microorganisms 2019;7:400.CrossRefGoogle ScholarPubMed
Correa-Martinez, CL, Tönnies, H, Froböse, NJ, Mellmann, A, Kampmeier, S. Transmission of vancomycin-resistant enterococci in the hospital setting: uncovering the patient environment interplay. Microorganism 2020;8:203.CrossRefGoogle ScholarPubMed
Cattoir, V, Leclercq, R. Twenty-five years of shared life with vancomycin-resistant enterococci: is it time to divorce? J Antimicrob Chemother 2013;68:731742.CrossRefGoogle ScholarPubMed
Frakking, FNJ, Bril, WS, Sinnige, JC, et al. Recommendations for the successful control of a large outbreak of vancomycin-resistant Enterococcus faecium in a non-endemic hospital setting. J Hosp Infect 2018;100:e216e225.CrossRefGoogle Scholar
Contreras, GA, Munita, JM, Arias, CA. Novel strategies for the management of vancomycin-resistant enterococcal infections. Curr Infect Dis Rep 2019;21:22.CrossRefGoogle ScholarPubMed
Vehreschild, MJGT, Haverkamp, M, Biehl, LM, Lemmen, S, Faetkenheuer, G. Vancomycin-resistant enterococci (VRE): a reason to isolate? Infection 2019;47:711.CrossRefGoogle ScholarPubMed
Piezzi, V, Wassilew, N, Atkinson, A, et al. Report of the first noscomial outbreak of vancomycin-resistant Enterococcus faecium (VRE) ST796 in Europe. Eurosurveillance (Submitted for publication.)Google Scholar
R Core Team, R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2019.Google Scholar
Van Rossum, G, Drake, FL. Python tutorial. The Netherlands: Centrum voor Wiskunde en Informatica Amsterdam; 1995.Google Scholar
Hur, EY, Yin, YJ, Jin, TX, Lee, SM. Development and evaluation of the automated risk assessment system for multidrug-resistant organisms (autoRAS-MDRO). J Hosp Infect 2018;98:202211.CrossRefGoogle ScholarPubMed
Safdar, N, Maki, DG. The commonality of risk factors for nosocomial colonization and infection with antimicrobial-resistant Staphylococcus aureus, Enterococcus, gram-negative bacilli, Clostridium difficile, and Candida . Ann Intern Med 2022;136:834.CrossRefGoogle Scholar
Tacconelli, E, Karchmer, AW, Yokoe, D, D’Agata, EM. Preventing the influx of vancomycin-resistant enterococci into healthcare institutions, by use of a simple validated prediction rule. Clin Infect Dis 2004;29:964970.CrossRefGoogle Scholar
Weterings, V, van Oosten, A, Nieuwkoop, E, et al. Management of a hospital-wide vancomycin-resistant Enterococcus faecium outbreak in a Dutch general hospital, 2014–2017: successful control using a restrictive screening strategy. Antimicrob Resist Infect Control 2010;10:38.CrossRefGoogle Scholar
Gouliouris, T, Coll, F, Ludden, C, et al. Quantifying acquisition and transmission of Enterococcus faecium using genomic surveillance. Nat Microbiol 2020;6:103111.CrossRefGoogle ScholarPubMed
Zhang, D, Wang, Y, Zhang, Z. Identifying and quantifying potential super-spreaders in social networks. Nat Sci Rep 2019;9:14811.Google ScholarPubMed
Maji, G, Dutta, A, Curaldo Malta, M, Sen, S. Identifying and ranking super spreaders in real world complex networks without influence overlap. Expert Syst Appl 2021;179:115061.CrossRefGoogle Scholar
Klemm, K, Serrano, MA, Eguiluz, VM, San Miguel, M. A measure of individual role in collective dynamics. Nat Sci Rep 2012;2:292.Google ScholarPubMed
Walker, J. Big data strategies disappoint with 85 percent failure rate, 23 November 2017. Digital Journal website. http://www.digitaljournal.com. Accessed July 7, 2021.Google Scholar
Figure 0

Table 1. Characteristics of Those With (Case) and Without (Control) VRE Infection (N = 87,244)

Figure 1

Fig. 1. Example visualization shows collections of rooms in the geospatial locations in orange, patients in turquoise (colonized patients with red halo), devices in yellow, and employees in purple. In the left panel, it is possible to select a subset of all patients. In the bottom row, the user can select a subset of the timeline of VRE screenings.

Figure 2

Table 2. Estimated Risk Factors for VRE Infection From the Fitted Logistic Regression Model

Figure 3

Fig. 2. Forest plot of risk factors for VRE acquisition from the adjusted multivariable logistic regression model.

Figure 4

Table 3. Estimated Features From Decision-Tree Analysis

Figure 5

Table 4. Example Hotspot List of Rooms, Devices, and Employeesa

Supplementary material: File

Atkinson et al. supplementary material

Atkinson et al. supplementary material

Download Atkinson et al. supplementary material(File)
File 957.6 KB