Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T18:49:21.613Z Has data issue: false hasContentIssue false

Effect of Patterns of Transferring Patients among Healthcare Institutions on Rates of Nosocomial Methicillin-Resistant Staphylococcus aureus Transmission: A Monte Carlo Simulation

Published online by Cambridge University Press:  02 January 2015

Maia Lesosky*
Affiliation:
Aalto University, Helsinki, Finland Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
Allison McGeer
Affiliation:
Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada Department of Microbiology, Mount Sinai Hospital, Toronto, Ontario, Canada
Andrew Simor
Affiliation:
Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
Karen Green
Affiliation:
Department of Microbiology, Mount Sinai Hospital, Toronto, Ontario, Canada
Don E. Low
Affiliation:
Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada Department of Microbiology, Mount Sinai Hospital, Toronto, Ontario, Canada
Janet Raboud
Affiliation:
Dalla Lana School of Public Health, University of Toronto, Ontario, Canada University Health Network, Toronto, Ontario, Canada
*
Aalto University, Institute of Mathematics, PO Box 1100, FI-02015 TKK, Helsinki, Finland ([email protected])

Abstract

Objective.

To determine the effect of the rate and pattern of patient transfers among institutions within a single metropolitan area on the rates of methicillin-resistant Staphylococcus aureus (MRSA) transmission among patients in hospitals and nursing homes.

Methods.

A stochastic, discrete-time, Monte Carlo simulation was used to model the rate and spread of MRSA transmission among patients in medical institutions within a single metropolitan area. Admission, discharges, transfers, and nosocomial transmission were simulated with respect to different interinstitutional transfer strategies and various situational scenarios, such as outlier institutions with high transmission rates.

Results.

The simulation results indicated that transfer patterns and transfer rate changes do not affect nosocomial MRSA transmission. Outlier institutions with high transmission rates affect the systemwide rate of nosocomial infections differently, depending on institution type.

Conclusion.

It is worth effort to understanding disease-transmission dynamics and interinstitutional transfer patterns for the management of recently introduced diseases or strains. Once endemic in a system, other strategies for transmission control need to be implemented.

Type
Original Article
Copyright
Copyright © The Society for Healthcare Epidemiology of America 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Filice, GA, Nyman, JA, Lexau, C, et al. Excess costs and utilization associated with methicillin resistance for patients with Staphylococcus aureas infection. Infect Control Hosp Epidemiol 2010;31:365373.CrossRefGoogle Scholar
2. Ben-David, D, Novikov, I, Mermel, LA. Are there differences in hospital cost between patients with nosocomial methicillin-resistant Staphylococcous aureas bloodstream infection and those with methicillin-susceptible S. aureus bloodstream infection? Infect Control Hosp Epidemiol 2009;30:453460.CrossRefGoogle Scholar
3. Klein, E, Smith, DL, Laxminarayan, R. Hospitalizations and deaths caused by methicillin-resistant Staphylococcus aureus, United States, 1999-2005. Emerg Infect Dis 2007;13:18401846.CrossRefGoogle ScholarPubMed
4. Klevens, RM, Edwards, JR, Richards, CL, et al. Estimating health care-associated infection and deaths in U.S. hospitals, 2002. Public Health Rep 2007;122:160166.CrossRefGoogle ScholarPubMed
5. Cosgrove, SE, Carmeli, Y. The impact of antimicrobial resistance on health and economic outcomes. Clin Infect Dis 2003;36:14331437.Google ScholarPubMed
6. Kim, T, Oh, PI, Simor, AE. The economic impact of methicillin-resistant Staphylococcus aureus in Canadian hospitals. Infect Control Hosp Epidemiol 2001;22:99104.CrossRefGoogle ScholarPubMed
7. Rubin, RJ, Harrington, CA, Poon, A, Dietrich, K, Green, JA, Moi-duddin, A. The economic impact of Staphylococcus aureus infection in New York City. Emerg Infect Dis 1999;5:917.CrossRefGoogle ScholarPubMed
8. Abramson, MA, Sexton, DJ. Nosocomial methicillin-resistant and methicillin-susceptible Staphylococcus aureus primary bacteremia: at what costs? Infect Control Hosp Epidemiol 1999;20:408411.CrossRefGoogle ScholarPubMed
9. Harbarth, S, Rutschmann, O, Sudre, P, Pittet, D. Impact of methicillin resistance on the outcome of patients with bacteremia caused by Staphylococcus aureus . Arch Intern Med 1998;158:182189.CrossRefGoogle ScholarPubMed
10. Huang, SS, Yokoe, DS, Hinrichsen, VL, et al. Impact of routine intensive care unit surveillance cultures and resultant barrier precautions on hospital-wide methicillin-resistant Staphylococcus aureus bacteremia. Clin Infect Dis 2006;43:971978.CrossRefGoogle ScholarPubMed
11. Jarlier, V, Trystram, D, Brun-Buisson, C, et al. Curbing methicillin-resistant Staphylococcus aureus in 38 French hospitals through a 15-year institutional control program. Arch Intern Med 2010;170:552559.CrossRefGoogle ScholarPubMed
12. Eveillard, M, Quenon, JL, Rufat, P, Mangeol, A, Fauvelle, F. Association between hospital-acquired infections and patients’ transfers. Infect Control Hosp Epidemiol 2001;22:693696.CrossRefGoogle ScholarPubMed
13. Hsu, CCS, Macaluso, CP, Special, L, Hubble, RH. High rate of methicillin-resistance of Staphylococcus aureus isolated from hospitalized nursing home patients. Arch Intern Med 1988;148:569570.CrossRefGoogle ScholarPubMed
14. Cordeiro, JCR, Silbert, S, Reis, AO, Sader, HS. Inter-hospital dissemination of glycolpeptide-resistant Enterococcus faecilis in Brazil. Clin Microbiol Infect 2004;10:260262.CrossRefGoogle Scholar
15. Malani, PN, Thal, L, Donabedian, SM, et al. Molecular analysis of vancomycin-resistant Enterococcus faecalis from Michigan hospitals during a 10 year period. JAntimicrob Chemother 2002;49:841843.CrossRefGoogle ScholarPubMed
16. Schaefler, S, Jones, D, Perry, W, Baradet, T, Mayr, E, Rampersad, C. Methicillin-resistant Staphylococcus aureus strains in New York City hospitals: inter-hospital spread of resistant strains of type 88. J Clin Microbiol 1984;20:536538.CrossRefGoogle ScholarPubMed
17. Duncan, SR, Scott, S, Duncan, CJ. The dynamics of small pox epidemics in Britain, 1550-1800. Demography 1993;30:405423.CrossRefGoogle Scholar
18. Mollison, D, Din, SU. Deterministic and stochastic models for the seasonal variability of measles transmission. Math Biosci 1993;117:155177.CrossRefGoogle ScholarPubMed
19. Gorbach, PM, Holmes, KK. Transmission of STIs/HIV at the partnership level: beyond individual-level analyses. J Urban Health 2003;80:1525.CrossRefGoogle Scholar
20. Hyman, JM, Li, J, Stanley, EA. Modeling the impact of random screening and contact tracing in reducing the spread of HIV. Math Biosci 2003;181:1754.CrossRefGoogle ScholarPubMed
21. Vlahov, D, Junge, B. The role of needle-exchange programs in HIV prevention. Public Health Rep 1998;113(suppl 1):7580.Google ScholarPubMed
22. Austin, DJ, Anderson, RM. Studies of antibiotic resistance within the patient, hospitals and the community using simple mathematical models. Philos Trans R Soc Lond B Biol Sci 1999;354:721738.CrossRefGoogle ScholarPubMed
23. Austin, DJ, Bonten, MJM, Weinstein, RA, Slaughter, S, Anderson, RM. Vancomycin-resistant enterococci in intensive care hospital settings: transmission dynamics, persistence, and the impact of infection control programs. Proc Natl Acad Sci USA 1999;96:69086913.CrossRefGoogle ScholarPubMed
24. Sébille, V, Chevret, S, Valieron, AJ. Modeling the spread of resistant nosocomial pathogens in an intensive care unit. Infect Control Hosp Epidemiol 1997;18:8183.CrossRefGoogle Scholar
25. Forrester, M, Pettitt, AN. Use of stochastic epidemic modeling to quantify transmission rates of colonization with methicillin-resistant Staphylococcus aureus in an intensive care unit. Infect Control Hosp Epidemiol 2005;26:598606.CrossRefGoogle Scholar
26. Kajita, E, Okano, JT, Bodine, EN, Layne, SP, Blower, S. Modelling an outbreak of an emerging pathogen. Nat Rev Microbiol 2007;5:700709.CrossRefGoogle ScholarPubMed
27. Raboud, JM, Saskin, R, Simor, A, et al. Modeling transmission of methicillin-resistant Staphylococcus aureus among patients admitted to a hospital. Infect Control Hosp Epidemiol 2005;26:607615.CrossRefGoogle ScholarPubMed
28. D'Agata, EMC, Webb, GF, Horn, MA, Moellering, RC Jr, Ruan, S. Modeling the invasion of community-acquired methicillin-resistant Staphylococcus aureus into hospitals. Clin Infect Dis 2009;48:274284.CrossRefGoogle ScholarPubMed
29. Robotham, JV, Scarff, CA, Jenkins, DR, Medley, GF. Methicillin-resistant Staphybcoccus arueus (MRSA) in hospitals and the community: model predictions based on the UK situation. J Hosp Infect 2007;65:9399.CrossRefGoogle Scholar
30. Donker, T, Wallinga, J, Grundmann, H. Patient referral patterns and the spread of hospital aquired infections through national health care networks. PLoS Comp Biol 2010;6:el000715.CrossRefGoogle Scholar
31. Bootsma, MCJ, Diekmann, O, Bonten, MJM. Controlling methicillin-resistant Staphylococcus aureus: quantifying the effects of interventions and rapid diagnostic testing. Proc Natl Acad Sci U S A 2006;103:56205625.CrossRefGoogle ScholarPubMed
32. Smith, DL, Dushoff, J, Perencevich, EN, Harris, AD, Levin, SA. Persistent colonization and the spread of antibiotic resistance in nosocomial pathogens: resistance is a regional problem. Proc Natl Acad Sci USA 2004;101:37093714.CrossRefGoogle ScholarPubMed
33. Gorwitz, RJ, Kruszon-Moral, D, McAllister, SK, et al. Changes in the prevalence of nasal colonization with Staphylococcus aureus in the United States, 2001-2004. J Infect Dis 2008;197:12261234.CrossRefGoogle ScholarPubMed
34. Abudu, L, Blair, I, Fraise, A, Cheng, KK. Methicillin-resistant Staphylococcus aureus (MRSA): a community-based prevalence survey. Epidemiol Infect 2001;126:351356.CrossRefGoogle ScholarPubMed
35. Smieszek, T, Fiebig, L, Scholz, RW. Models of epidemics: when contact repetition and clustering should be included. Theor Biol Med Model 2009;6:11.CrossRefGoogle Scholar
36. Simor, AE, Gilbert, NL, Gravel, D, et al. Methicillin-resistant Staphylococcus aureus colonization or infection in Canada: national surveillance and changing epidemiology, 1995-2007. Infect Control Hosp Epidemiol 2010;31:348356.CrossRefGoogle ScholarPubMed